Facilities Master Plan

Marin Community College District
Kentfield, California

July 20, 2004
College of Marin
Facilities Master Plan

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>PROCESS</td>
<td>6</td>
</tr>
<tr>
<td>Facilities Master Plan</td>
<td>9</td>
</tr>
<tr>
<td>Linkage to the Educational Master Plan</td>
<td>10</td>
</tr>
<tr>
<td>Survey of Voters</td>
<td>11</td>
</tr>
<tr>
<td>Bond Financing Analysis</td>
<td>12</td>
</tr>
<tr>
<td>Demographics Analysis</td>
<td>13</td>
</tr>
<tr>
<td>Sustainable “Green” Construction Principles and Energy Analysis</td>
<td>13</td>
</tr>
<tr>
<td>Second Round of Community Meetings</td>
<td>13</td>
</tr>
<tr>
<td>Facilities Condition Assessment (FCA)</td>
<td>14</td>
</tr>
<tr>
<td>Facilities Master Plan</td>
<td>17</td>
</tr>
<tr>
<td>Kentfield Campus</td>
<td>17</td>
</tr>
<tr>
<td>Indian Valley Campus</td>
<td>19</td>
</tr>
<tr>
<td>Projects List</td>
<td>20</td>
</tr>
<tr>
<td>OVERVIEW</td>
<td>21</td>
</tr>
<tr>
<td>GUIDING PRINCIPLES FOR CAMPUS DEVELOPMENT</td>
<td>24</td>
</tr>
<tr>
<td>Introduction</td>
<td>24</td>
</tr>
<tr>
<td>GUIDING PRINCIPLES FOR THE DISTRICT</td>
<td>24</td>
</tr>
<tr>
<td>GUIDING PRINCIPLES FOR THE KENTFIELD CAMPUS</td>
<td>27</td>
</tr>
<tr>
<td>History</td>
<td>27</td>
</tr>
<tr>
<td>Site Development</td>
<td>29</td>
</tr>
<tr>
<td>Real Estate</td>
<td>30</td>
</tr>
<tr>
<td>Utilities</td>
<td>30</td>
</tr>
<tr>
<td>Transportation</td>
<td>31</td>
</tr>
<tr>
<td>Parking and Pedestrian Linkages</td>
<td>32</td>
</tr>
<tr>
<td>Open Space and Landscaping</td>
<td>33</td>
</tr>
<tr>
<td>Architecture</td>
<td>34</td>
</tr>
<tr>
<td>Implementation</td>
<td>36</td>
</tr>
<tr>
<td>GUIDING PRINCIPLES FOR THE INDIAN VALLEY CAMPUS</td>
<td>37</td>
</tr>
<tr>
<td>History</td>
<td>37</td>
</tr>
<tr>
<td>Site Development</td>
<td>37</td>
</tr>
<tr>
<td>Real Estate</td>
<td>39</td>
</tr>
<tr>
<td>Utilities</td>
<td>39</td>
</tr>
</tbody>
</table>
Transportation .. 39
Parking and Pedestrian Linkages ... 40
Open Space and Landscaping .. 40
Architecture .. 41
Implementation ... 42

SECTION THREE PROJECTS LIST ..43

OVERVIEW ... 43
Rough Order of Magnitude Budgets ... 43
PROJECT LIST SUMMARY DESCRIPTIONS & GRAPHIC REPRESENTATIONS 50
NOTES ... 51

SECTION FOUR APPENDIX

APPENDIX A: FACILITY CONDITION ASSESSMENT EXECUTIVE SUMMARY
APPENDIX B: LIST OF INTERVIEWS
APPENDIX C: REPORT OF CIVIL ENGINEERS
APPENDIX D: REPORT OF LANDSCAPE ARCHITECTS
APPENDIX E: REPORT OF ARCHITECTS
APPENDIX F: PRELIMINARY FRAMEWORK FOR DESIGN GUIDELINES
APPENDIX G: SUSTAINABLE ARCHITECTURE
APPENDIX H: A STRATEGY FOR UTILIZATION OF THE INDIAN VALLEY CAMPUS
APPENDIX I: THE REUSE OF THE EXISTING BUILDING AT INDIAN VALLEY CAMPUS
The word *campus*, more than any other term, sums up the unique physical character of the American college and university. When it was first used to describe the grounds of a college, probably at Princeton in the late eighteenth century, *campus* had simply its Latin meaning, a field, and described the *green expansiveness* already distinctive of the American schools. But gradually the word assumed wider significance, until at most colleges it came to mean the entire property, including buildings, so that one could speak even of an "urban campus" that might possess nothing remotely resembling a field. In 1925, the German city planner Werner Hegemann, writing about America, defined *campus* for his countrymen as "a piece of land that is covered with the buildings of an American university." But beyond these purely physical meanings, the word has taken on other connotations, suggesting the *pervasive spirit of a school*, or *its genus loci, as embodied in its architecture and grounds*. *Campus* sums up the distinctive physical qualities of the American college, but also *its integrity as a self-contained community and its architectural expression of educational and social ideals*. As early as the 1870s the term was so evocative that an observer of one American college could write, "There is no spell more powerful to recall the memories of college life than the word Campus."

Paul Venable Turner

[Bold Italics added for emphasis.]
Introduction

The College of Marin was founded in 1926; it grew steadily through the nineteen sixties and early seventies. In the late sixties and early seventies several new buildings were built on the Kentfield Campus. At that same time a complete new College of Marin campus was built at Indian Valley on the southwest side of Novato. The enrollment growth projected for the seventies and eighties did not occur. Presently, the College is serving a region that has had relatively little population growth since that burst of new construction. Accordingly, there have not been any significant new buildings or major renovation and capital renewal projects since that earlier period. Moreover, the physical plants at both the Kentfield and Indian Valley campuses are aging such that major capital renewal or replacement is needed to restore the physical condition and meet contemporary standards of educational adequacy.

Only limited funds from the State are anticipated to be available, so the District is looking at other ways to finance the needed renewal as discussed in subsequent sections of this report. The District has not had a major capital improvement program for several decades.

The Marin Community College District retained 3D/International (3D/I) to develop a facilities master plan and a statement of facility needs. The work began with assessing the physical condition of the existing facilities and documenting the repair, rehabilitation, and modernization needs—presented in the Facilities Condition Assessment (FCA), a separate report—followed by the development of a statement of new facility needs.

This report summarizes our findings and recommendations. It is divided into two major sections following this Executive Summary plus appendices. These sections present more detailed information about the major concepts and tasks presented in this Executive Summary. The first major section, the Facilities Master Plan, describes the organizing principles adopted for the Kentfield Campus and the Indian Valley Campus and establishes the long-term goals for development of both campuses to provide for the anticipated changes in type and possibly size of enrollment and activities. In the second section, the Projects List, the individual projects that are recommended by this study and that are the basis for the bond referendum to be presented to the voters are described with simple narratives and graphics.

The findings of the Facility Condition Assessment are summarized in an appendix to this report.
During the course of the investigations, the College has reached the following conclusions that support the need for expanded and improved facilities:

- Statewide budget cuts are affecting the College’s ability to provide the facilities and educational equipment needed to deliver high-quality affordable education for local students.
- Existing facilities are suffering from cuts in maintenance and capital renewal budgets and are falling behind in educational adequacy.
- The College will retain and operate both the Kentfield and the Indian Valley Campuses with Kentfield remaining as the “main campus” and Indian Valley being reformatted as a multi-institution “Educational Park” where the District and selected educational partners will provide a range of educational services to the community.
- The College must continue to provide facilities and specialized job training programs to meet the needs of local communities and to allow students and adults to acquire or upgrade job skills in these tough economic times. Facilities upgrades are necessary to enable the District to accomplish this mission.
- Because the University of California and California State University systems are becoming more expensive and difficult to enter, more people rely on community colleges; therefore, College of Marin must be upgraded so it can provide local students with a high quality education they might otherwise not receive.

Process

The District has embarked on a methodical process of facilities evaluation and planning since 2002 to reach the current level of definition of needs and remedies. The effort has involved faculty, staff, administration, students, the community, and outside consultants working together for the good of the College.

Activities to date have included:

- Facility Condition Assessment of both campuses
- Strategic Facilities Assessment and Approaches to Redevelopment
- First Round of Community meetings to seek community input and understand community expectations
- Development of Facilities Master Plan
- Two Community Opinion Surveys
- Financial Analysis
• Demographics Analysis
• Energy Consumption/Operating Cost Analysis
• Sustainable Building, i.e. “Green” Principles developed and adopted
• Second Round of Community Meetings
• Evaluation of all data and consideration of funding options, including the possibility of a facilities bond measure

As the District goes forward with the facilities initiative, additional planning activities will be required as a continuation of the planning efforts to date. Additional planning activities needed to implement a specific facilities program plan when such a program plan is developed in detail and is scheduled to begin, include the following:

I. Program Preparation—necessary groundwork for successful, efficient program
 a. Alignment of Strategic Plan with Facilities Program
 i. Verification of the strategic academic plan
 ii. Assess impact of any strategic plan changes on the facilities program
 b. Environmental Impact Reports
 i. Geotechnical engineers look for underground storage tanks, pollution sites, etc.
 ii. Geotechnical surveys and reporting
 iii. Coordination with appropriate state and federal agencies’ reporting and testing requirements
 c. Utilities
 i. Coordination with local utilities providers
 1. Locations
 2. Capacities
 d. Traffic
 i. Evaluation of current traffic patterns
 ii. Growth management for proposed program
 iii. Coordination with local authorities
 e. Verify Existing Conditions Mapping
 f. Systems and Controls
 i. Policies and procedures
 ii. Documentation and reporting
 iii. Cost and schedule controls
 iv. Web-based collaboration tools
 v. Systems to update and monitor the progress of facility condition assessment information
 g. Public Interface
 i. Public access website for project information
 ii. Public relations component to keep people informed

II. Design Guidelines and Standards
 a. Why Set Standards?
i. Defines campus identity
ii. Improves program efficiency
iii. Reduces cost
iv. Maintains quality
v. Builds consensus

b. Overall Design Goals
 i. Esthetics
 ii. Adaptability
 iii. Sustainability

c. Site Guidelines and Standards
 i. Parking
 ii. Wayfinding
 iii. Landscaping
 iv. Hardscaping

d. Building Systems
 i. MEP
 ii. Technology
 iii. Finishes
 iv. Materials

e. Educational Space Standards
 i. Space Allocations
 ii. Quality of Space
 iii. Instructional Aids

III. Project Definition
 a. Evaluation of individual projects in the context of the overall master plan/program
 b. Charrette sessions to define priorities and goals for project
 c. Contextual/esthetic analysis
 d. Space planning
 e. Budget analysis
 f. Produce project program to give to project architects

The Facility Condition Assessment (FCA) was conducted in 2002 under a separate contract through the Foundation for California Community Colleges to assess all of the State’s community colleges and develop a system-wide database of facility conditions. Specialists from 3D/I examined maintenance records and inspected the facilities while collecting data that was processed into 3D/I’s assessment software called COMET.

During the first half of 2002, the College commissioned a San Francisco real estate and facilities-oriented management consulting firm, Conversion Management Associates (CMA), to help the Board evaluate several scenarios for the disposition and/or redevelopment of its campuses. The five scenarios ranged from do nothing to sell both campuses and build a new one. This
study brought many issues to light while delving into utilization, facility condition, and development options for each campus.

As part of the evaluation process, the College held six community meetings to solicit opinions and desires for the future of the College and the campuses. The importance of the College to the Marin community was evidenced by the significant turnout for these meetings and the high level of participation. These meetings gauged the community’s commitment to both campuses.

The Board of Trustees then determined that the College would retain both the Kentfield and Indian Valley Campuses. Significant renovation would be required to improve the operational capability and appearance of the existing facilities. In addition, some new construction would be needed to replace buildings that are beyond their useful lives and to provide contemporary educational adequacy and capacity to allow for a return to previous higher enrollments.

Facilities Master Plan

The facility needs determination reported in this document, Facilities Master Plan, began in May 2003 with intense activity from August through October. 3D/I conducted numerous work sessions with faculty, staff, students, administration, and board members. (See List of Interviews in Appendix) Additionally, the 3D/I team conducted numerous one-on-one interviews with faculty and staff from both Colleges and several community representatives. The team enjoyed frequent collaboration with Dr. Lois Callahan, Interim President/Superintendent, Dr. Michael Beebe, Vice President for Business Services, and Dr. Jan Dargl, Vice President for Academic Affairs.

During the initial stages of this study, 3D/I commissioned four consultants to assist in this planning effort. These consultants reviewed the architectural and landscape design traditions, assessed the general accessibility, and researched utility capacities and environmental constraints to development at both the Kentfield and Indian Valley campuses. These consultants were KMD Architects from San Francisco, Sandis Humber Jones Civil Engineers from Oakland, RHAA Landscape Architects from Mill Valley, and Sally Swanson Associates ADA Consultants from San Francisco.

In the first quarter of 2004, 3D/I commissioned three additional consultants to address specific issues not included in the initial analysis. A demographics consultant, Lapkoff & Gobalet Demographics Research, Inc., was commissioned to study historical and anticipated enrollment trends at the College of Marin and two engineering consultants, Capital Engineering
 Consultants and The Engineering Enterprise, were commissioned to evaluate anticipated energy savings based on the assumption that all new and modernized facilities would be designed and built using “green” building standards.

Linkage to the Educational Master Plan

At the same time the facilities needs determination and other investigations were progressing, the College was preparing an updated Educational Master Plan with an in-house committee. Information from this process helped assure that the *Facilities Master Plan* will meet the educational objectives of the District. The *Facilities Master Plan* has embraced the goals and objectives of the Educational Master Plan to date. The *Facilities Master Plan* incorporates the following themes from Educational Master Planning effort:

- A re-balancing of programs offered rather than a substantial change in types of programs
- An assumption that enrollment will remain steady
- A demand for more Advanced Technology Classrooms (ATC’s) for all departments
- Better-integrated student support services such as study spaces
- The advantages of shared, flexible space for interdisciplinary initiatives
- The desire to offer Contract Education, on campus and off, with the need for seminar space
- College of Marin as “THE Center of Marin” for the arts, lectures, and cultural events
- Expansion of links and partnerships with educational institutions and other organizations.

Much additional collaboration during the programming phase and during detailed plan development will occur during the program definition phase described above.

Taking the results of the Facility Condition Assessment, considering issues communicated by the on-going Educational Master Plan team, and the “wish list” for new facilities gathered through the interview process, 3D/I developed a series of projects that combined new (including replacement) facilities, renovations, and site improvements to achieve the Master Plan for...
each campus. Several iterations with College leadership were required to arrive at the recommendations in this report.

The *Facilities Master Plan* represents a long-term vision for the College that is independent of the funding sources. This report anticipates a bond program to pay for most of the projects. The College will continue to seek State funding as well as donations.

The “finalist” projects are grouped by types of related projects (preparatory, modernization, infrastructure, and new construction), and are prioritized as either “Critically Needed” or as “Desirable”. “Critical” priority projects must be implemented within an approximately ten-year time frame if the District is to continue to be able to deliver high quality education to the community. If these critical needs are not addressed in that time frame, significant degradation of the educational mission will inevitably occur as buildings are taken off-line and as the District’s educational equipment becomes ever more obsolete.

Investigation of Facilities Financing Alternatives

There are three sources of facilities funding potentially available to the District: operating funds, State Capital Project outlay, and funds from a local facilities bond measure. Diverting operating funds for construction of new facilities means cutting programs, something the District is very reluctant to do. The amount of State Capital outlay funds allocated to the College of Marin have never been great. Due to the fact that the College has not had local matching funds, in recent years COM has received little or no State Funding. Thus, a local facilities bond appears to be the only practical financing option for a major facilities program for the district.

Survey of Voters

The Survey of Voters conducted by Godbe Research in November 2003 found significant support among the 600 District constituents surveyed. A carefully crafted and balanced questionnaire was used with each respondent to assess the level of support for an approximate $225 million bond and to determine issues that seem most important to voters. The following are some of the key conclusions reported to the Board.

- Sufficient support (55%) for the bond was reached at a maximum of $22 per $100,000 of assessed valuation.
• Support for the measure increased to 63% with additional information.

• “Maintaining existing community college facilities” ranked within the top four issues of importance for respondents.

• “Maintaining” college facilities is more important to voters that “Renovating” or “Building” new community college facilities.

• Features of the measure that tested highest:
 o Modernization of the Kentfield Science Center
 o Providing state-of-the-art computer technology at both campuses
 o Improvements in campus accessibility for the disabled at both campuses
 o Improved security and safety systems

• Positive arguments that tested highest in support of the measure:
 o The community college provides affordable educational opportunities for those who need it
 o A community college education is one of the best bargains in the Bay Area
 o This measure will fund remodeling to improve energy efficiency at the college campuses saving future costs

• A public education campaign is necessary in order to mitigate the potential negative perceptions of the College that tested against the measure.

We find the results of the Survey of Voters extremely encouraging, considering there has been no public education campaign initiated yet. The more the Voters know about the College of Marin, the more positive the results.

Bond Financing Analysis

The College of Marin commissioned Public Financial Management, Inc. of San Francisco to prepare an analysis of the District’s bonding capacity and the related cost to Marin County property owners, assuming the majority of the plan would be funded by a General Obligation Bond.

In a report presented to the Board of Trustees on December 9, 2003, Public Financial Management, Inc. stated that the current assessed valuation within Marin Community College District is approximately $39 billion, providing sufficient bonding capacity.
The cost to the average homeowner in the District, based on the assumption that General Obligation Bonds will be issued for between $175 million and $250 million, will range from $55 to $85 per year.

Demographics Analysis

Lapkoff & Gobalet, demographic consultants, were engaged to analyze the demographic characteristics of the District’s potential student base. They determined that there will be minimal growth in Marin County over the next several years. Thus the Facilities Masterplan approach has been to understand what is needed to allow the District to continue to offer high-quality educational opportunities to the citizens of the District and County for the next 40 years.

Sustainable “Green” Construction Principles and Energy Analysis

The Board of Trustees has expressed a commitment to embrace “green” building standards and “sustainable” design standards for all future construction projects. This is a sound position to adopt, not only from an environmental perspective, but also from an operating cost perspective.

Capital Engineering Consultants and The Engineering Enterprise conducted a study that compared current energy consumption, at the Learning Resource Center on the Kentfield Campus, to the expected energy consumption if the building were to completely modernized to LEEDS standards. As expected, this study proved that for this building alone, the College of Marin would realize a reduction in operating costs of at least $53,000.00, which is approximately $.81 per square foot. If we apply the same rate to all COM facilities, the District would realize savings in energy related operating costs of approximately $410,000.00 annually.

The district then moved to adopt a “Sustainable Facilities Construction and Operation” resolution at the Board Meeting of July 20, 2004.

Second Round of Community Meetings

The College conducted another series of community meetings in April of 2004 to share the recommendations from this report and seek additional input from the public regarding appropriate actions. As a result, a refined proposed projects list will be prepared.
Facilities Condition Assessment (FCA)

Over a period of about two months, a staff of several 3D/International architects and engineers performed an Existing Facility Assessment of the Marin Community College District’s facilities at both campuses. The physical condition assessment of existing facilities resulted in a separate report issued as a stand-alone volume in the fourth quarter of 2002. The key existing facility condition findings and costs to repair, as reported in this earlier volume, are provided for reference in the Facility Condition Assessment Executive Summary in the appendix of this report.

A visual inspection of the District’s existing facilities was conducted to identify the condition and to estimate the cost to perform the necessary maintenance, repairs and renovations.

The Facilities Condition Assessment reported on the current physical condition of fifteen of the District’s buildings at Kentfield and four clusters at Indian Valley, totaling approximately 357,599 gross square feet and 150,770 gross square feet respectively.

The results of the assessment are summarized in the Facility Condition Index Table on the next page. The estimated initial cost to repair the facilities (i.e., to renew the component systems to a “like new” condition) at Kentfield totals $45.1 million with a projection of the need for an additional $18.9 million for systems replacement over the next ten years. For Indian Valley facilities these numbers are $18.7 million and $9.3 million respectively.

The overall FCI of 36.40 % at Kentfield and 37.42 % at Indian Valley indicates that overall the District’s facilities are in poor condition from a life cycle point of view.

- None of the major buildings on the Kentfield or Indian Valley campuses have an FCI of 10% or less, the range considered representative of a building in good condition. Two building are between 10% and 20%, one of which is the most recent of the old buildings (Harlan Center).
- Most other buildings have an FCI far in excess of 10% -- between 20% and 50%. One building exceeds 70% (Bolinas Marine Station). Major systems in these buildings are nearing the end of their life cycle thresholds which accounts for the large expenditures projected for the next ten years.
- The worst building is the Administrative Center at Kentfield, one of the oldest, which has an FCI that exceeds 100%.
More discussion on the methodology is included in the *Facilities Condition Assessment Executive Summary* in the appendices of this report. The detailed findings for each of the District’s buildings is provided in the FCA Report issued to the District as a separate volume.

Capital renewal cost estimates in the FCA report were used in developing the rough order of magnitude budgets or cost allocations for modernization projects for existing facilities.

As part of a statewide effort in conjunction with the California Community College Chancellor’s office and the Foundation for California Community Colleges, 3D/I conducted Facility Condition Assessments for all 72 California Community College Districts, which included 108 separate campuses, and over 48 million square feet of buildings.

The FCI’s for these Districts ranged from a low of .04% to a high of approximately 50% for a campus consisting of primarily portable buildings. With an FCI of approximately 37%, the College of Marin ranks in the lower 10 % of all Community College Districts, actually 66 out of 72 Districts. That means that 65, or over 90%, of the California Community College Districts have facilities in better condition than those at the College of Marin. Yet, Marin County is one of the wealthier counties in California and the nation!

The *Facilities Condition Assessment Executive Summary* illustrates how it would take an investment of approximately $4.4 million per year over the next 10 years to maintain the current FCI, which is worse than 90% of the Community College Districts in California. However, according to the District’s records, over the past five years, an average of $1.5 million per year has been spent on maintaining the buildings and grounds. **If the District does not undertake a major capital improvement plan, while continuing to fund the same amount annually on maintenance, in 10 years the FCI will raise to well over 50% from the current 38%**.

The other factor to consider relating to the condition of the current facilities is educational/functional adequacy. The newest facilities at IVC are nearly 30 years old. Since there have been no major renovations or modernizations in the past 30 years, the facilities are educationally and functionally inadequate in many ways. This deficiency is not reflected in the FCI.

As illustrated by the references in the margin to the left, the built environment has a measurable effect on student performance. The literature is filled with results of similar studies.
Facility Condition Index Tables

<table>
<thead>
<tr>
<th>Facility</th>
<th>Gross SF</th>
<th>Year Built</th>
<th>Repair Cost</th>
<th>Replacement Cost</th>
<th>FCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kentfield Campus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science Center</td>
<td>50,837</td>
<td>1969</td>
<td>$6,237,105</td>
<td>$15,848,669</td>
<td>39.35%</td>
</tr>
<tr>
<td>Admin. Center/Childrens Center</td>
<td>3,595</td>
<td>1940</td>
<td>$1,304,430</td>
<td>$1,252,195</td>
<td>104.17%</td>
</tr>
<tr>
<td>Bolinas Marine Lab</td>
<td>845</td>
<td>1964</td>
<td>$180,631</td>
<td>$250,454</td>
<td>72.12%</td>
</tr>
<tr>
<td>Bolinas Marine Station</td>
<td>3,333</td>
<td>1964</td>
<td>$485,988</td>
<td>$1,120,611</td>
<td>34.37%</td>
</tr>
<tr>
<td>Business and Management Center</td>
<td>5,429</td>
<td>1956</td>
<td>$788,972</td>
<td>$1,805,644</td>
<td>43.69%</td>
</tr>
<tr>
<td>Dance Center/Landscape Center</td>
<td>9,604</td>
<td>1954</td>
<td>$1,427,940</td>
<td>$3,808,264</td>
<td>37.50%</td>
</tr>
<tr>
<td>Diamond P.E. Center/Gymnasium</td>
<td>36,392</td>
<td>1965</td>
<td>$4,690,560</td>
<td>$12,890,938</td>
<td>36.39%</td>
</tr>
<tr>
<td>Dickson Hall</td>
<td>11,870</td>
<td>1935</td>
<td>$866,878</td>
<td>$3,947,871</td>
<td>21.96%</td>
</tr>
<tr>
<td>Disabled Students Center</td>
<td>1,661</td>
<td>1973</td>
<td>$87,241</td>
<td>$588,312</td>
<td>14.83%</td>
</tr>
<tr>
<td>FCLRC/Lib./Bookstore/ESL/CIS</td>
<td>65,575</td>
<td>1971</td>
<td>$6,458,868</td>
<td>$23,175,090</td>
<td>27.87%</td>
</tr>
<tr>
<td>Fine Art/Art Gallery/Box Offic</td>
<td>79,636</td>
<td>1950</td>
<td>$13,358,745</td>
<td>$28,206,386</td>
<td>47.36%</td>
</tr>
<tr>
<td>Fusselman Hall</td>
<td>14,717</td>
<td>1939</td>
<td>$2,285,791</td>
<td>$5,212,635</td>
<td>34.35%</td>
</tr>
<tr>
<td>Harlan Center</td>
<td>25,651</td>
<td>1969</td>
<td>$1,563,038</td>
<td>$8,521,562</td>
<td>18.34%</td>
</tr>
<tr>
<td>Olney Hall</td>
<td>12,227</td>
<td>1956</td>
<td>$1,357,843</td>
<td>$4,066,606</td>
<td>33.39%</td>
</tr>
<tr>
<td>Stdt.Serv.Cen./Cafe/Emeritus</td>
<td>36,227</td>
<td>1966</td>
<td>$3,979,059</td>
<td>$13,138,283</td>
<td>30.29%</td>
</tr>
<tr>
<td>Indian Valley Campus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Pomo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 Auto Body and Fender</td>
<td>5,770</td>
<td>1976</td>
<td>$731,753</td>
<td>$1,874,841</td>
<td>39.03%</td>
</tr>
<tr>
<td>02 Auto Technology Lab</td>
<td>8,824</td>
<td>1976</td>
<td>$642,660</td>
<td>$2,867,175</td>
<td>22.41%</td>
</tr>
<tr>
<td>03 Medical Asst/Class/Lab/Ofc.</td>
<td>8,900</td>
<td>1976</td>
<td>$1,384,235</td>
<td>$2,984,377</td>
<td>46.38%</td>
</tr>
<tr>
<td>04 Indus. Tech/Machine & Mtls</td>
<td>5,300</td>
<td>1976</td>
<td>$564,972</td>
<td>$1,877,214</td>
<td>30.10%</td>
</tr>
<tr>
<td>05 Classrooms/Food Vending</td>
<td>5,200</td>
<td>1976</td>
<td>$868,661</td>
<td>$1,689,632</td>
<td>51.41%</td>
</tr>
<tr>
<td>06 Geol/Geog/Bio/Chem</td>
<td>9,000</td>
<td>1976</td>
<td>$1,653,815</td>
<td>$3,017,910</td>
<td>54.80%</td>
</tr>
<tr>
<td>07 Class/Office/ESL</td>
<td>4,500</td>
<td>1976</td>
<td>$690,212</td>
<td>$1,462,181</td>
<td>47.20%</td>
</tr>
<tr>
<td>2 Administrative Services</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08 Admissions/Student Services</td>
<td>3,700</td>
<td>1975</td>
<td>$388,222</td>
<td>$1,243,330</td>
<td>31.22%</td>
</tr>
<tr>
<td>09 Admin. Services/Health Cntr</td>
<td>3,600</td>
<td>1975</td>
<td>$363,881</td>
<td>$1,209,726</td>
<td>30.08%</td>
</tr>
<tr>
<td>10 ASIVC Office</td>
<td>1,484</td>
<td>1975</td>
<td>$203,473</td>
<td>$482,195</td>
<td>42.20%</td>
</tr>
<tr>
<td>11 Info. Services Center</td>
<td>5,000</td>
<td>1977</td>
<td>$476,154</td>
<td>$1,767,068</td>
<td>26.95%</td>
</tr>
<tr>
<td>12 Book Store/ Child Care</td>
<td>5,804</td>
<td>1975</td>
<td>$559,503</td>
<td>$1,950,347</td>
<td>28.69%</td>
</tr>
<tr>
<td>3 Miwok</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 Art Labs/Gallery/Classrooms</td>
<td>9,000</td>
<td>1975</td>
<td>$1,038,817</td>
<td>$3,017,910</td>
<td>34.42%</td>
</tr>
<tr>
<td>14 Foreign Language Lab</td>
<td>4,500</td>
<td>1975</td>
<td>$628,586</td>
<td>$1,462,181</td>
<td>42.99%</td>
</tr>
<tr>
<td>15 Assoc. Students/Lounge/Deli</td>
<td>6,300</td>
<td>1975</td>
<td>$931,381</td>
<td>$2,047,054</td>
<td>45.50%</td>
</tr>
<tr>
<td>16 Dig. Village Bus. Cluster</td>
<td>8,610</td>
<td>1975</td>
<td>$1,155,062</td>
<td>$2,887,134</td>
<td>40.01%</td>
</tr>
<tr>
<td>17 Library</td>
<td>14,280</td>
<td>1977</td>
<td>$1,324,235</td>
<td>$4,201,563</td>
<td>31.52%</td>
</tr>
<tr>
<td>4 Ohlone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Compr/Court Rept Labs</td>
<td>4,187</td>
<td>1975</td>
<td>$699,875</td>
<td>$1,360,479</td>
<td>51.44%</td>
</tr>
<tr>
<td>19 Ofc Occup/Court Rept/Comp</td>
<td>16,356</td>
<td>1975</td>
<td>$1,950,909</td>
<td>$5,484,548</td>
<td>35.57%</td>
</tr>
<tr>
<td>20 Food Vend/PE/Class Rooms</td>
<td>6,676</td>
<td>1975</td>
<td>$1,017,690</td>
<td>$2,169,227</td>
<td>46.91%</td>
</tr>
<tr>
<td>21 Pool/Shower/Locker Room</td>
<td>9,506</td>
<td>1977</td>
<td>$1,179,536</td>
<td>$3,543,944</td>
<td>33.28%</td>
</tr>
<tr>
<td>22 Campus Police/Corp Yard</td>
<td>4,273</td>
<td>1975</td>
<td>$271,213</td>
<td>$1,435,878</td>
<td>18.89%</td>
</tr>
</tbody>
</table>
The Facilities Master Plan identifies 40 projects that are needed to accommodate the projected changes and possible growth in enrollment and to accomplish capital renewal. Twenty-one projects are on the Kentfield Campus; 18 are on the Indian Valley Campus, and one is for the Bolinas Marine Lab. The Projects List sorts the projects into primary projects plus several alternates. Some projects may eventually not be recommended for inclusion in the final bond referendum. The projected costs for all of the projects total some $267 million. The 40 projects will:

- Construct 210,000 gsf in four buildings and two expansions at Kentfield
 80,000 gsf in 2 buildings at Indian Valley

- Modernize 310,000 gsf by renovating 7 buildings at Kentfield
 135,700 gsf by renovating 4 clusters of buildings at Indian Valley

- Demolish 80,000 gsf in 6 buildings at Kentfield

- Enhance and expand campus utilities, roads, sidewalks, courtyards, lawns, and landscape features.

- Develop a multi-institutional educational park at Indian Valley

Kentfield Campus

The primary emphasis at Kentfield will be the modernization and/or replacement of the existing inventory of 30-plus-year old buildings. Strategic demolition of most of the oldest, smallest, and least functional buildings will provide space on the site for new construction to meet acute needs for student processing, technology, teaching, and campus operations.

The following site plan illustrates the existing buildings recommended to be demolished.
The following site plan illustrates the existing buildings to be expanded or those recommended to replace demolished buildings.

The following site plan illustrates the existing buildings to be modernized.
Indian Valley Campus

The current plans to develop an educational park directly influence the future development of the campus. The existing clusters of buildings allow for a multi-institutional campus to develop with the College of Marin at Indian Valley occupying the largest and most comprehensive cluster (Pomo Cluster) and the Administrative Services Cluster. New buildings would be those that are typically shared by the various institutions, such as student life, community and conference center, and amphitheater, but at least one new facility will be required to expand the capacity of the Pomo Cluster to house the consolidated activities of the College.

The following site plan illustrates those buildings to be “preserved” for future use, proposed expansion projects and proposed modernization projects.
Projects List

The proposed projects have been listed in the categories or types of related projects (preparatory, modernization, infrastructure, and new construction) with no priority intended. The final prioritized list for a bond proposal, as determined by the Board and the administration prior to a bond referendum, will be subject to change as the bond proposal process unfolds, but major rearrangements are not anticipated.
Overview

The primary goal of this study was to develop a long-range master plan for both campuses of the College of Marin and recommend a catalog of facilities projects for inclusion in a bond referendum for 2004 elections. These projects will remedy current and anticipated deficiencies and support potential growth. To achieve this goal, the facilities needs should be accommodated in an orderly manner within the framework of a master plan. Although the details of some projects and the timing proposed in this report may vary in the actual execution, the framework of the plan should be honored such that the final outcome will match the vision, if not the details.

The secondary goal was to define projects suitable for inclusion in a bond referendum for the November 2004 elections.

The Facilities Master Plan (the “Plan”) and the component projects reported in this document were developed by 3D/I along these steps:

1. Conduct a facility condition assessment (refer to Appendix A) to ascertain what work is required to sustain, renew or replace the existing inventory;
2. Develop a “wish list” of new facilities and site improvements;
3. Examine the current draft educational master plan to confirm and justify facility needs to support educational programs;
4. Determine a “most wanted / most needed” list for both new and renovated facilities;
5. Develop project descriptions and preliminary costs;

Steps to be taken during the next phase in preparation for a bond referendum:

6. Investigate what scope and types of facilities the community will support (polling by the College);
7. Update preliminary budgets, schedules, priorities, and construction sequences;
8. Determine the amount of money the District can legally bond;
9. Prepare final projects list with priorities for inclusion in the bond proposal.

As depicted by the diagram in the margin, there are many factors that contribute to the statement of needs and the definition of the bond program components. Ideally, the process of preparing the master plan and then deriving the specific projects to submit for bonding is linear. However, due to the time available, the District proceeded with several parallel tracks. The faculty and staff were conducting on-going deliberations over a new
educational or academic master plan and discussions about new programs and facility needs for several months. Draft copies of the Academic Plan chapters were shared with 3D/I. Although specific facility requirements were not defined, mention was made of deficiencies and aspirations for up-to-date facilities to support the academic plans. The Facilities Master Plan recommends both renovation/modernization and new construction projects that will provide facilities to accommodate the educational activities discussed in the Academic Plan.

3D/I conducted the facilities condition assessment in mid-late 2002. Beginning in May of 2003 and continuing later in September and October, 3D/I conducted on-campus faculty and staff interviews and group workshops meeting with approximately 110 people including community representatives and students. A list of these interviews is included in Appendix B of this report.

On the following pages are the Guiding Principles for the Plan that 3D/I distilled from the numerous interviews and deliberations.

Combining all the research and products of workshops by the contributing firms, 3D/I prepared project descriptions that identified the components and sub-projects that make up a building and/or site work project (infrastructure, accessibility, landscape, etc.). Each of the descriptions and the accompanying graphics in the following section of this report reflect the methodical evaluation of needs and wants against the conditions of existing facilities and the need for more space. The order or sequence in which these projects should be accomplished is important to both the costing and the development of the bond tiers as well as the time frame required to meet specific needs. This sequencing and prioritization will be best addressed closer to the bond election and will be constantly reviewed throughout the bond program’s life.

The diagram on the following page illustrates the three categories of facility needs and the steps taken to resolve those needs in a project proposed for the bond program. “Inventory” refers to the existing physical plant and whether these buildings need capital renewal of key systems to extend their usable life or renovation to accommodate new uses. A basic question is whether the building is worth renewing or should it be demolished and replaced.

“Projected Growth” means new capacity. That can be addressed by adaptive use of existing facilities or construction of new space and, also, by land acquisition. “Functional Change” is shorthand for evolutionary modifications in functions or criteria of service that can be provided for by either new or renovated facilities. “Infrastructure” reminds us that the systems that power,
cool, heat, transport, etc., need to be kept up to date and up to capacity as conditions change and new space is brought on line.

As the project descriptions were being formed, the College conducted community opinion surveys to gauge the interest and support for a bond proposal (see related comments above). Also, preliminary legal and financial studies have determined how much money the District could borrow through bonds under laws that govern the rate of indebtedness the College could undertake. These activities may be revisited later in 2004 to confirm and update the determinations as preparation for the bond referendum proceeds.

The resulting list of projects and the rough order of magnitude cost estimates were submitted to the Board in November 2003. The composite master plan map in the Executive Summary shows the locations of all the proposed new construction projects.

The impact during construction on the Kentfield campus will be very significant, as will the increased capacity and quality of the learning environment when the work is completed.
Guiding Principles for Campus Development

Introduction

Generally, the importance of the facilities master plan resides in the framework it provides to guide development over many years of growth and change. The major elements of that framework are these: HISTORY, SITE DEVELOPMENT, REAL ESTATE, UTILITIES, TRANSPORTATION, PARKING AND PEDESTRIAN LINKAGES, OPEN SPACE AND LANDSCAPE, and ARCHITECTURE. From these elements statements that summarize the influence of each element on the long-term development of the physical environment at the College of Marin campuses were derived. These statements are referred to as “Guiding Principles”.

The *Guiding Principles* were used to establish proposed *Projects* for each category of the *Plan*.

Guiding Principles for the District

The College of Marin was founded in 1926 as the Marin Junior College (MJC). The campus was established on the grounds of the Butler estate. The first classes were held in the Butler House and Barn in that same year. In 1948, the name of the college was changed to College of Marin (COM).

Overall, the history of the District’s development can be observed in this Chronological List of Major Events:

- 1926 Marin Junior College established
- 1927 Tamalpais Center acquired for MJC
- 1928 Butler estate purchased for MJC
- 1929 Harlan Hall completed
- 1937 Golden Gate Bridge opened
- 1938 *Original Campus Plan* prepared
- 1940 Fusselman Library occupied
- 1948 Name of college changed to College of Marin
- 1955 Bolinas Marine Center acquired for COM
- 1966 Pacheco Ranch acquired for second college campus of COM
- 1971 Second college began classes in temporary location
- 1975 Indian Valley Colleges campus opened
- 1985 Indian Valley Colleges campus closed for repairs
- 1987 Indian Valley Campus reopened as second campus of original college
Following is a summary of the District’s real estate assets at present that were assessed by 3D/I and as reported in the Facility Conditions Assessment Report:

Land Owned
- Kentfield campus: 77.7 acres
- Indian Valley Campus: 333.3 acres
- Bolinas Marine Center: 0.5 acres
- **TOTAL**: 411.5 acres

Buildings
- Kentfield Campus, 15 buildings and: 354,266 gsf
- Indian Valley campus, 22 buildings and: 150,770 gsf
- Bolinas Marine Center 2 buildings and: 3,333 gsf
- **TOTAL**: 508,369 gsf*

Parking Spaces
- Kentfield Campus: 1,721 spaces
- Indian Valley Campus: 899 spaces

*Several temporary and modular buildings were not assessed and therefore are not included in these totals. They may encompass as much as 35,000 gsf.

The population growth projected for Marin County (especially the North County area) in the 1960’s never happened. Those projections were the basis for the development of the second college and its campus at Indian Valley. The student enrollment at both campuses has actually diminished over the past decade or so. Preliminary findings of a current demographics study being prepared by Lapkoff & Gobalet indicate that Marin County will experience an approximate .05% increase in population over the next several years. If nothing else changed during that time frame, there would be minimal growth in enrollment at the College of Marin.

However, we believe there is a real probability for resurgence in enrollment at the College of Marin based on the following factors:

- An enhanced image and recognition in the community,
- Enrollment caps at the State of California four-year universities,
- Higher demand for job training and/or retraining,
- The impact of the Educational Park concept on enrollment at IVC.

Additionally, we believe the College of Marin should be able to recapture students that have drifted away as measured by the Participation Rate or Enrollment factor. Influences that will impact this potential resurgence are:
• Improved public perception gained by the enthusiasm resulting from a new district president,
• Increased marketing for students,
• A return of the positive messages about the College from faculty and staff, and
• Enhancement of the physical image resulting from renovation and new construction.

According to a recent article in the Chronicle for Higher Education, California’s Community Colleges have estimated that some 175,000 students could not enroll in classes this academic year. Additionally, there is a trend, both nationally and in California, towards dual-enrollment programs that give college credit to high school students.

Completing the first two years of school at a community college may well become the norm rather than the exception for those going to four-year institutions. This may bring an increase in academically oriented students from beyond the District as well as from within.

The increased interest in job training and workforce development is well documented. COM needs to successfully capture sponsorships and provide appropriate training facilities for vocational programs.

Additionally, although the current population in Marin is only experiencing modest growth, during the next decades it is likely to “recycle”. There is already evidence of an emerging trend of the elderly population selling their homes to younger families with children. It is only a matter of time before these children cycle through the K-12 system and arrive at college age.

The best facilities master plan will provide for the improvement of the quality of the physical plant while positioning the campus to grow, if necessary. There is a local pride in the College of Marin as the “Little Berkley” or “Junior Stanford”. It is very possible that College of Marin could become the college of choice for students bound for these famous institutions. The improved quality of the College’s campus will be important if this occurs.

The Guiding Principles for the District for developing both of its campuses are derived from the culture and traditions of Marin County. The culture of the county is built on distinctive regional interests in areas of health, wellness, fine arts, natural environment, and technology. These principles are also the basis of the mission established for the College. The District is committed to a quality core curriculum that produces a high rate of transfer
to four-year colleges and universities and a high percentage of degree/certification completion. It is also committed to quality, flexible career education that responds to the evolving needs of industry and students.

The Plan recommends these general Guiding Principles for the District:

- **Maintain the organizational concept of one college with two campuses; the flagship campus is the Kentfield Campus and the ancillary campus is the Indian Valley Campus.**
- **Provide appropriate and attractive courses for the entire county in the most efficient yet easily accessible manner.**
- **Develop the Indian Valley Campus as a specialized “educational park” to complement the Kentfield Campus and enrich the District through increased use of existing facilities. The IVC will house the workforce development / career education campus of the College of Marin and various separate and autonomous educational institutions ranging from a charter high school to upper level and graduate schools. The park will have a single administration to facilitate its purposes.**
- **Respect the Native American archaeological sites on both campuses.**
- **Develop completely accessible campuses.**
- **Practice good stewardship of the environment of Marin County.**
- **Continue the tradition of good stewardship of the public capital invested in College facilities through maintenance, renovation, and remodeling (i.e., capital renewal).**
- **Build sustainable buildings when new construction is required or when existing buildings are modernized.**

Guiding Principles for the Kentfield Campus

History

As mentioned above, the original campus was located in Kentfield on the grounds of the former Butler Estate. The view of Mount Tamalpais and an arboretum-like collection of trees were features of the estate, and they became the theme of the first campus plan of 1938 by the landscape architect, Horace Cotton. An “Art Deco Missionesque” style of architecture was adopted for the initial buildings. This style may have been derived from the Tamalpais Center which was purchased by the College as its first
permanent structure. Characteristics of this style were pastel stucco walls, terra cotta tile roofs, and loggias of semi-circular arches resting on short classical style columns with smooth shafts and detailed capitals. Examples of the style survive in Fusselman Hall and the Administrative Center. The theme or icon building for the original campus plan was Harlan Hall, which was demolished (c.1969) and replaced by the present Harlan Center (1971).

Several other buildings were added to the campus in the late 1960’s and early 1970’s. The Diamond Physical Education Center, the Austin Science Center, the Compton Learning Resources Center, the Expansion of the Fine Arts Center, and the Deedy Student Services Center are from this period.

The historic campus plan and its associated architectural theme were violated beginning with the construction of the Diamond Physical Education Center. There is apparently no campus plan that supports the location of the “newer” buildings. These violations are still on the minds of many of the faculty, administration, and community—those who nostalgically remember the “way things were” and those new to the College who sense a definite lack of cohesiveness in the physical plants.

There has been no major new construction on the Kentfield Campus in the three decades since these buildings were constructed.

The Plan recommends these Guiding Principles for the Kentfield Campus:

- **Reestablish the spirit of the Original Campus Plan of 1938.**
 - View of Mount Tamalpais from campus commons and from buildings
 - View of Commons from Sir Francis Drake Boulevard
 - Campanile or Bell Tower as a visual marker and Campus icon. This may well be integrated as part of a replacement building
 - Amphitheater (enhanced “people place”)
 - Embracing of Corte Madera Creek as landscape feature integrated with the campus
 - Unified architectural style (a “family” of buildings)

- **Develop a new and contemporary architectural vocabulary for the design of new buildings in harmony with the original architectural style**— “Neo Art Deco Missionesque”— as exemplified by the existing Fusselman Hall (1940) and the demolished Harlan Hall (1929).
Site Development

With the Original Campus Plan in mind, the major expansions of the campus boundaries that have accumulated over time should be united with the original campus both physically and visually to emphasize and enhance the continuity of the present campus. The presence of this contemporary campus also needs to be made recognizable to the public.

The lower part of the original campus to the south of Corte Madera Creek is in the flood plain. Refer to Appendix C. (Flood events are well known, although FEMA does not currently publish an official flood plain elevation for this area) New construction in that area should be designed in accordance with the flood plain elevation to be determined by a new topographical survey to be commissioned by the College.

The Kentfield Campus should be made completely accessible to the disabled. As part of this planning process, Sally Swanson Architects, Inc. has prepared an Access Compliance Survey Report. Copies of that document are on file at the 3D/I office in San Francisco. This document is available for review upon request.

The Plan recommends these Guiding Principles for Site Development:

- Prepare and maintain a campus plan update.
- Prepare and maintain a new topographic survey, including flood elevation section specific to Corte Madera Creek at the campus.
- Create a “sense of place” with numerous student-gathering spaces.
- Develop a “public edge” along the entire College Avenue frontage; consider lease space for businesses that complement the College, such as the “Tacoeria”.
- Connect and blend the “physical education” campus (“east campus”) and the lower area of the original campus (“west campus”) with the upper area.
- Create a perimeter identity for the campus—a “sense of location” and a “sense of arrival”.
- Carefully consider impacts of the campus on the surrounding neighborhoods.

The Plan recommends these Projects for Site Development:

- New Entrance Plaza at College Ave. and Sir Francis Drake Blvd.
- Enhanced Perimeter Landscaping
- New Campanile (may be integrated as part of a building)
Real Estate

Marin County is one of the most beautiful environments in which to live in the United States. The County is a bountiful confluence of mountains, redwood trees, seashores, and bays in a comfortable year around climate all only a half an hour away from San Francisco. Marin County is also noted as one of the most costly real estate markets in the country. The Kentfield Campus is land locked and surrounded by existing residential neighborhoods and commercial and institutional uses.

The Plan recommends these Guiding Principles for Real Estate:

- Prepare a current boundary survey of the campus.
- Continue acquisition of contiguous properties whenever possible.
- Consider any advantageous exchange of the tract north of Sir Francis Drake Boulevard for other contiguous tracts adjacent to the campus.

Utilities

The buildings on the campus are served directly from the perimeter by the usual external public and private utilities with the exception of the Deedy Student Services Center. The utility route and source for this building are unknown. The public and private utilities that supply the campus are of sufficient capacity to accept the proposed increase in building area. Refer to Appendix C.

Each building has its own heating and cooling systems except for the collection of old buildings that are served from the Fine Arts Center. The District should consider developing a Central Plant and distribution system for thermal energy utilities. Such an investment will have significant long term savings for costs of production and equipment maintenance. Because there are no major utility lines within the campus, the installation of a thermal utilities distribution system after the fact will be easier than in many other such situations.

The Plan recommends these Guiding Principles for Utilities:

- Prepare and maintain a detailed utilities map for the external utilities lines and all internal utilities lines.
- Plan for a Central Heating and Cooling Plant and distribution system.
- Plan all new and modernized buildings that precede the development of a Central Plant for eventual attachment to the Central Plant distribution system.
The Plan recommends these Projects for Utilities:

- New Fire Alarm System.
- New Central Heating and Cooling Plant

Transportation

The College of Marin at Kentfield (“College”) is on Sir Francis Drake Boulevard; the boulevard cross section transforms to a regular, four-lane road at the College. College Avenue intersects Drake Boulevard at the College; it turns into Magnolia which loops back to US 101 by way of Doherty Drive and Tamalpais Drive. The bus routes use this loop. Bicycles and foot traffic use the extensive hike and bike route system as it connects to the Corte Madera Creek route. In spite of the extensive use of the hike and bike routes, they seem to have virtually no use for accessing the College.

Transportation to the Kentfield Campus is by automobile, bicycle, or by Golden Gate Transit buses. Automobile transportation requires vehicle storage (“parking”) at the destinations. Refer to Parking and Pedestrian Linkages. Because land costs in Marin County are so high and the campus is surrounded by existing neighborhoods and commercial and institutional uses, bus and bicycle transportation should be strongly encouraged. Implementation of higher parking fees may encourage this shift in transportation while supporting improvements to the parking.

Transportation within the campus is pedestrian (and by wheel chair for the disabled). An efficient and accessible pedestrian linkage system should be maintained and improved on a constant basis. This system should link parking to the campus and the buildings and gathering spaces to one another within the campus.

The Plan recommends these Guiding Principles for Transportation:

- Constantly lobby to preserve and expand the Golden Gate Transit service to the campus.
- Enhance the use of the hike and bike path on Corte Madera Creek.
- Provide secure bicycle parking adjacent to the creek path.

The Plan recommends these Projects for Transportation:

- New Campus Accessibility Improvements
- Improved Pedestrian Linkages.
Parking and Pedestrian Linkages

Parking is part of the automobile transportation system and must be provided by the destination. The parking is costly both in land taken up by surface use and in capital cost for the structures required when there is no longer land for surface parking. The great cost of land in Kentfield and the adjacency of neighborhoods may mitigate the cost of structured parking. The user of the automobile can be required to pay for the parking at the destination, but this is a limited source of financing for the typical community college.

An automobile transportation system requires vehicle storage (“parking”) at the destinations. Because of this, parking is an unintended part of the mission of virtually every college and university. How well parking is done is often a large part of the image of an institution in the public’s eyes. At a minimum of 350 square feet per automobile parking usurps a great deal of land area not counting associated landscape areas and drives.

Parking at the Kentfield Campus has been developed adjacent to the pedestrian core of the campus on an as-available and as-needed basis over the years. The criticisms about parking are primarily qualitative (i.e. location) rather than quantitative. The proverbial complaint of “There’s not enough parking!” is really not a complete statement. “There’s not enough parking at a time and place convenient for me!” is the complete statement.

Most of the existing parking stock at Kentfield sits on areas needed for expansion of facilities presently or in the future. This includes Lots 4, 5, 6, 7, 9, and 13. Given the adjacency of neighborhoods, commercial establishments, and institutions; the College is not likely to make significant acquisitions of contiguous land for use in relocating parking from needed building sites. Additionally, the cost of land when available is at least $100 per square foot. These facts suggest that one or more parking structures may have to be constructed.

Parking structures are costly and should only be constructed when there is no alternative solution. If such a situation occurs the structure should be located according to these criteria:

- Accessible to traffic
- At the edge of the permanent campus (at present and in the future if possible to determine)
- On a site that will not obstruct future growth
- On a site that allows for a long structure at least 125 feet in width to accommodate two parking bays.
Given these criteria and the present situation, the best location for an initial parking structure at the College is at the south edge parallel to the back of the Woodlands Market. Another location is along College Avenue, south of the creek.

A design of a parking structure on a campus should:

- Consider the structure to be an academic building for the quality standards of its architecture,
- Use the ground floor for institutional use,
- Expose the vertical traffic to view from the campus,
- Provide stair landings that serve as overlooks with benches,

The Plan recommends these Guiding Principles for Parking and Pedestrian Linkages:

- Monitor parking supply ratio constantly and adjust parking supply as necessary to maintain the existing ratio.
- Construct parking structures only when there is no other option for maintaining the parking supply ratio with surface lots.
- When parking structures are constructed, plan for mixed use on the ground floor and for a handsome appearance.

The Plan recommends these Projects for Parking and Pedestrian Linkages:

- New Parking Structure 1
- New Pedestrian Bridge across Corte Madera Creek
- Improved Campus Accessibility
- New Wayfinding System

Open Space and Landscaping

Open space is the land permanently set aside for outdoor uses. Primarily, open space is dedicated to active recreation such as sports fields or for passive recreation such as lounging, Frisbee throwing, and kite flying, or just to be an “outdoor room”, a place for pedestrian interaction or just passing through.

The athletic fields at the physical education campus provide the active open space on the Kentfield Campus. All of this area of open space is committed under a shared use agreement with the nearby Branson School. The Commons and Corte Madera Creek provide the passive open space. The view of Mount Tamalpais adds psychologically to the open space inventory.
at Kentfield campus. This has been important to the Kentfield Campus since its beginning.

Lush landscaping has been a tradition of the Kentfield Campus since the beginning, also, when it inherited the landscaping of the Butler Estate. This tradition with its collection of heritage trees and generous shrubbery should be maintained and enhanced. Presently, the landscaping is overgrown in many areas and needs to be reexamined, thinned, and removed in some cases. Refer to Appendix E. Design guidelines for landscape should be developed and adopted by the District. Refer to Appendix F.

The Plan recommends these Guiding Principles for Open Space and Landscape:

- Develop landscape design guidelines.
- Continue the landscaping tradition of the Butler Estate and establish an arboretum and botanical garden for educational purposes.
- Reexamine the existing landscaping for needed improvements.
- Embrace Corte Madera Creek by maintaining a fifty-foot setback and using the area within for landscape and pedestrian / bicycle access.

The Plan recommends these Projects for Open Space and Landscape:

- Campus Landscape Renovation, Amphitheater, and Creek Bank and Bridge Improvement

Architecture

The College of Marin was established in Kentfield. The growth and evolution of the Kentfield Campus can be seen in the following Chronological Inventory of Buildings:

- 1924 Butler House and Barn [built in 1902, demolished c.1950-51], Architect unknown
- 1926 Main Junior College Gateway, [demolished] Men’s Luncheon Club
- 1927 Tamalpais Center, [built, 1909, demolished, c. 1964], Acquired from Tamalpais Center Board of Directors
- 1927 Science Building, [demolished, c. 1971], A. A. Cantin, Architect
- 1929 George H. Harlan Hall (demolished, c.1969), A. A. Cantin, Architect
- 1935 Dickson Hall, Architect unknown
• 1938 Original Campus Plan, Horace Cotton, Landscape Architect
• 1940 Fusselman Hall, John Kramer, Architect
• 1946 Dance / Landscape Building, Architect unknown
• 1946 Administrative Center, Arnold Constable, Architect
• 1947 Cafeteria, Remodeled World War II Barracks
• 1952 Fine Arts Center, Arnold Constable, Architect
• 1953 Business and Management Center, William Corlett, Architect
• 1956 Clyde Olney Hall, William Corlett and Peter Skaer, Architects
• 1956 Bolinas Marine Station, acquired from U. S. Coast Guard
• 1959 Fusselman Hall Addition, Architect Unknown
• 1965 Irwin P. Diamond Physical Education Center, Architect unknown
• 1966 Elizabeth Deedy Student Services Center, Falk and Booth, Architects (Richard Blanchard, designer)
• 1966 Addition to the Fine Arts Center, Falk and Booth, Architects
• 1971 Ward Austin Science Center, Architect unknown
• 1971 Harlan Center, Corwin and Booth, Architects (Joe Fell, designer)
• 1973 Frances Compton Learning Resources Center, Corwin and Booth, Architects

Based on the findings of the FCA, and considering the limited capability, several of the older buildings should be demolished and replaced with new buildings. The remaining buildings have significant deferred maintenance. These same buildings are badly in need of modernization for contemporary educational adequacy.

The buildings of the campus should show a harmony of design even while having distinctive designs. A new theme or icon building is needed for reference; it should probably incorporate the campanile as did the original theme building, Harlan Hall. The theme building and the restored Fusselman Hall should serve as a two-part reference for future designs. The new style should allude to the old and include the aesthetic elements and style that sustainable design will contribute to it. This should be easily achieved since the original architecture used a number of sustainable design concepts. Refer to Appendix G. The new vocabulary (“style”) should be recorded in architectural guidelines adopted by the District. Refer to Appendix F.

New buildings should reflect the high level of commitment to the environment in Marin County by being of highly sustainable design. Refer to Appendix H.
The new buildings on campus should also be sited so as to perpetuate, enhance, and extend the spirit of the Original Campus Plan.

The Plan recommends these **Guiding Principles** for Architecture:

- Develop architectural guidelines for design of new and modernization of existing buildings.
- Demolish selected old buildings in accord with the FCA and replace with new buildings.
- Renew existing buildings in accord with the FCA and modernize them to serve current functions.
- Adapt the style of the more recent buildings to harmonize with the new architectural vocabulary and the original architectural style.

The Plan recommends these **Projects** for Architecture:

- Modernization of Learning Resource Center, Conversion to Technology Center
- Modernization of Harlan Center
- Modernization of Fusselman Hall
- Modernization of Science Center
- Modernization of Diamond Physical Education Center
- New Learning Resource Center
- Addition to Student Center, or New Student Center
- New Facilities Management Center
- New Multi-Purpose Academic and Support Facility
- New Child Care / Development Center

Implementation

To implement the Plan, a sufficient amount of “turn around” or “swing” space needs to be constructed first. This will allow all or significantly large areas of the existing buildings to be emptied for renovation and modernization. The new construction will then become space for easing crowded conditions, for remodeling to implement the Academic Master Plan and for providing space for potential growth.

Virtually any new construction will take up existing parking. In order to keep up the stock of parking a parking structure will probably be necessary.

A plan for renovation and modernization of this magnitude practically demands that a Central Plant be constructed. Much of the cost of the plant
would be derived from the aggregated savings in the costs of the H/VAC work in each individual projects.

Guiding Principles for the Indian Valley Campus

History

Beginning in the early 1960’s, plans were developed for a second college and a new campus in the northern part of Marin County. In 1975 the Indian Valley Colleges campus opened for class.

Ten years later the campus of the Indian Valley Colleges, which had a separate administration and faculty, was closed for structural repairs to its buildings. The glue-laminated wood structures, where exposed to the elements, were deteriorating. The needed repairs to the buildings were made, and in 1987 the Indian Valley Campus (IVC) of the reorganized and now singular College of Marin reopened for classes. The momentum on the campus was never regained and the campus has languished largely unused to the present.

Site Development

The planning for the Indian Valley Campus went on for nearly ten years. The process and the product of this planning are recorded in the Indian Valley Colleges: A Master Plan of 1980 by Neptune & Thomas Associates, Architects. From its inception the plan was developed by applying the best ecological design concepts available at the time. This moment in time saw California take the lead in the nation with respect to ecological design. This was the time of the development of Sea Ranch (Al Boeke, 1963, Lawrence Halprin, 1964, and Charles Moore, 1966), of Ian McHarg’s highly influential book, Designing with Nature, 1970, and of the first Earth Day in 1971. The theme for the development of Sea Ranch by landscape architect, Lawrence Halprin, was drawn from the Pomo Indians’ philosophy of “Live lightly on the land”. The IVC is truly in the vanguard of the nation’s progress with respect to ecological design.

The original plan called for small-scale wooden buildings in clusters reminiscent of the campus plan for the University of California at Santa Cruz. The clusters were conceived for the colleges of social and behavioral sciences, arts and humanities, and natural and physical sciences and for recreation, and administrative services. The three college clusters were
named for local Indian tribes that once lived in the area: Ohlone, Miwok, and Pomo respectively.

The campus remains as it was when it opened except for effects of non-use and related minimal maintenance.

A recent concept for using the IVC facilities calls for an “educational park” which would be populated by various autonomous educational institutions. Refer to Appendix I. The concepts have been put into practice by inviting the College to San Francisco State University to locate programs on the campus (although no commitment has been given by either institution) and by leasing space to the Marin School for Arts and Technology, a new charter school.

The original wayfinding system has degenerated over time. A new and stronger system will be necessary to direct the users of the “educational park”. The entrance sequence for the campus should be strengthened, also. The nature of the institutional geography of the “educational park” may necessitate several new pedestrian bridges over the creek that separates the pedestrian academic core from the parking.

The Plan recommends these Guiding Principles for Site Development:

- Prepare a campus plan update.
- Continue to develop the campus honoring the basic concepts and fundamental principles of the Original Campus Plan of 1980 by Neptune & Thomas Associates.
- Adapt the campus plan to enhance the establishment and evolution of the “educational park”.
- Enhance access and way finding in support of the “educational park”.
- Designate the Pomo Cluster as the College of Marin campus at Indian Valley and consolidate all College activities there. Expand the cluster as needed to support future functions.

The Plan recommends these Projects for Site Development:

- Campus Accessibility Improvements
- New Way Finding System
- New Pedestrian Bridges and Entrance Gate Feature
- New Commons / Connector / Quad
- New Amphitheater and Clock Tower
Real Estate

The IVC campus has some 333 acres of which only about 20 percent is buildable (topographic slope of 20° or less). The original plan allowed for expansion by providing sites for the addition of four additional clusters of similar buildings and for the expansion of the Pomo Cluster. If the original plan is adhered to, the IVC has land sufficient for doubling its present size without any acquisition. More intense development of the original plan would provide expansion even beyond that originally planned for without need for additional land.

The Plan recommends no Guiding Principles for Real Estate.

The Plan makes no recommendations for Projects for Real Estate.

Utilities

The trunk line utilities were put in place for a campus twice as dense as present. Refer to Appendix C.

The Central Plant is a geothermal installation. This fact should be celebrated as part of the campus’s avant garde sustainability.

The Plan recommends these Guiding Principles for Utilities:

- Maintain quality infrastructure systems and utility corridor.
- Promote sustainability through innovative design and low-impact operations, such as promulgated by the LEED™ program.

The Plan recommends these Projects for Utilities:

- Gas Line Replacement
- Capital Renewal and Expansion of Central Plant

Transportation

The Indian Valley Campus is at the very end of Ignacio Boulevard. By design the traffic ends in the parking lots at the campus. This is the source of the pervasive feeling that IVC is “far away” and “on the way to nowhere”. The connection of Ignacio Boulevard westward to Indian Valley Road, as contemplated in the original plan, or to another route to connect Ignacio to Center Road or Novato Boulevard would greatly enhance the access to the IVC for the north county area and reduce the sense of a campus “out in the wilderness”.

A hike and bike route exists along stretches of Ignacio Boulevard. The original campus plan provided large amounts of bicycle parking. This hike and bike route should be made continuous and its use encouraged.

Parking and Pedestrian Linkages

At the Indian Valley Campus, parking was designed as part of the campus plan from the beginning. Few campus plans have done a better job of providing for parking than did the IVC plan. The existing parking ratio at IVC is quite adequate for the current enrollment.

The parking is arrayed along the northern edge of IVC and separated from the pedestrian academic core by Novato Creek. Access to the pedestrian campus is by bridges across the creek. There will be need of more of these bridges as the “educational park” develops.

If the concept for an educational park at IVC is extremely successful and additional parking is needed, the existing parking could easily be double decked to use the existing topography. Additional parking constructed at IVC will face strict environmental requirements functionally and aesthetically.

Open Space and Landscaping

The IVC is open space and landscaping. The academic core of the campus uses only about 50 of its 333 acres; the remaining acres are all natural state open space. Additionally there is a large Indian Valley Open Space Preserve adjacent to the campus. The landscaping is virtually all natural (xeroscape) and remains in place due to careful siting of the original buildings so as to preserve as many of the existing trees as possible.

The natural landscaping of the IVC should be maintained and perpetuated. Contrasting landscapes should be planted in the courtyards of the clusters. Refer to *Appendix E*.

Design guidelines for landscape should be developed and adopted by the District. Refer to *Appendix G*.

The Plan recommends these *Guiding Principles* for Open Space and Landscaping:

- *Continue to develop the campus honoring the basic natural concepts and fundamental ecologic principles of the Original Campus Plan of 1980.*
- *Adapt the campus plan to enhance the establishment and evolution of the “educational park”.*
• Develop design guidelines for landscaping. Use more formal landscaping in the courtyards of the clusters for contrast with the natural landscaping of the campus in general. Preserve and augment the natural landscape.

The Plan recommends these Projects for Open Space and Landscaping:

• Enhanced Entrance Road Landscaping.
• Construct a New Courtyard Landscape for the Pomo Cluster.

Architecture

All of the buildings at Indian Valley were designed and built at the same time, so they are all of the same style. The Neo Indian Valley style will blend with the original buildings but will be a new and contemporary version of the sustainable institutional buildings designed originally to blend in with the natural environment. Refer to Appendix F.

Since their closure for repairs in 1985 the buildings at IVC have been suspect in their quality, durability, etc. The buildings represent a capital investment of some $50,000,000 and a total of 151,000 gross square feet that can be easily put back into service in the immediate future, to be replaced in the longer-range future of a successful “educational park”. Refer to Appendix J.

The Plan recommends these Guiding Principles for Architecture:

• Celebrate the sustainable and archaeologically reverent design of the existing architecture.
• Develop architectural guidelines (“Neo Indian Valley style”) for design of new and modernization of existing building.
• Adapt the existing architectural style to improve maintainability of the buildings, enhance their sustainability, and blend the buildings into the natural landscape.
• Establish the Indian Valley Campus as the workforce development / career education campus for the College. Grow it into a general education campus, as well, over time. Use the “Neo Indian Valley” architectural style developed for all new buildings.
• Perform renovation of buildings sufficient to preserve the capital (roofs, walls, etc.) of the Miwok and Ohlone Clusters for use by others.
• Renovate, remodel, and augment the existing facilities as necessary for educational adequacy.

The Plan recommends these Projects for Architecture:
• Fire Safety System Project
• Modernization of Pomo Cluster
• Capital Preservation of Ohlone Cluster
• Capital Preservation of Miwok Cluster
• Modernization of Administrative Services Center
• Capital Preservation of Library
• New Community / Conference Center
• New College of Marin Building at Pomo Cluster
• New Planetarium and Observatory

Implementation

A strategy for developing the educational park concept at IVC is presented in *Appendix I*. In the beginning, the implementation of the concept is largely organizational. With regard to existing facilities, capital preservation of the buildings to be used by others is urgent. Renovation and modernization of the Pomo Cluster for the College of Marin is of immediate importance, too.

The larger challenge will be the guidance of new development by both the College of Marin at the Pomo Cluster and the other autonomous institutions that locate on the campus and build new buildings.

The Central Plant and its distribution system should be renovated and modernized, too.
Overview

Work was started with the College in May 2003 to prepare a preliminary master plan for College of Marin. 3D/I held a number of meetings with the college administration, faculty, staff, students, and community that resulted in a “wish list” of projects. After sifting through the compiled data, these projects were reviewed with the administration to provide the first Project List.

Rough Order of Magnitude Budgets

3D/I prepared preliminary budgets for each of the capital improvement projects to establish amounts for the basic construction costs (“hard costs”) and the “soft costs” such as entitlement (i.e., planning, approval, zoning, etc.); land acquisition; design and plan check; furniture, fixtures and equipment; management, legal, and accounting services; and a program contingency. Together these comprise the total or “Project costs.” Soft costs are usually estimated using percentages of the construction costs then added together to form the project cost. As part of the facility condition assessment, a table of probable soft costs was developed for use in estimating the repair and replacement costs.

<table>
<thead>
<tr>
<th>Soft Cost</th>
<th>Percentage of General Contract</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Architecture & Engineering</td>
<td>15.0%</td>
</tr>
<tr>
<td>9. Plan Check/Permits/Fees</td>
<td>2.0%</td>
</tr>
<tr>
<td>10. Hazardous Materials</td>
<td>0.5%</td>
</tr>
<tr>
<td>11. Materials Testing & Inspection</td>
<td>2.0%</td>
</tr>
<tr>
<td>12. Bonds & Insurance</td>
<td>2.0%</td>
</tr>
<tr>
<td>13. Temporary Storage and Relocation</td>
<td>1.0%</td>
</tr>
<tr>
<td>14. Furniture & Equipment</td>
<td>7.0%</td>
</tr>
<tr>
<td>15. Construction Management</td>
<td>5.0%</td>
</tr>
</tbody>
</table>

The total mark-up is nominally 35% (or a 1.35 multiplier) that was applied to construction costs to arrive at the recommended rough order of magnitude (ROM) budgets (also called “cost allocations”) for each project.

For existing buildings, the repair costs cited in the FCA report were used plus an allowance for modernization on a square foot basis was applied. New construction costs were based on square foot unit costs.

The following table summarizes each project and its ROM budget.
<table>
<thead>
<tr>
<th>Proj. #</th>
<th>Project Name</th>
<th>Project Description</th>
<th>Cost Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>K.1</td>
<td>Site, Roadways, Infrastructure Development Plans and Impact Reports</td>
<td>Detailed project implementation planning for environmental impacts, project definitions, finalizing master plan, program management mobilization.</td>
<td>$550,000</td>
</tr>
<tr>
<td></td>
<td>Sub-Total Preparatory Costs</td>
<td>$550,000</td>
<td></td>
</tr>
<tr>
<td>K.2</td>
<td>Modernization of Learning Resource Center, Conversion to Technology Center</td>
<td>Upgrade classrooms, building systems, fix roofs and walls, replace outmoded equipment, improve technology and accessibility, and remove hazardous materials. Renovate to new use as Technology focused facility. Add space and redesign exterior.</td>
<td>$16,454,755</td>
</tr>
<tr>
<td>K.3</td>
<td>Modernization of Harlan Center</td>
<td>Upgrade classrooms and labs, building systems, fix roofs and walls, replace outmoded equipment, improve technology and accessibility, remove hazardous materials, and improve exterior appearance.</td>
<td>$5,294,375</td>
</tr>
<tr>
<td>K.4</td>
<td>Modernization of Fusselman Hall</td>
<td>Upgrade classrooms, building systems, fix roofs and walls, replace outmoded equipment, improve technology and accessibility, remove hazardous materials, and recapture original architectural style.</td>
<td>$8,014,370</td>
</tr>
<tr>
<td>K.5</td>
<td>Modernization of Science Center</td>
<td>Upgrade classrooms, building systems, renovate labs to state-of-the art teaching facilities, fix roofs and walls, replace outmoded equipment, improve technology and accessibility, remove hazardous materials, improve exterior appearance.</td>
<td>$18,135,816</td>
</tr>
<tr>
<td>Proj. #</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Cost Allocation</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>K.6</td>
<td>Modernization of Fine Arts Center</td>
<td>Upgrade classrooms, building systems, fix roofs and walls, replace outmoded equipment, improve technology and accessibility, remove hazardous materials, and improve exterior appearance.</td>
<td>$19,094,620</td>
</tr>
<tr>
<td>K.7</td>
<td>Modernization of Student Center</td>
<td>Upgrade classrooms and meeting spaces, building systems, fix roofs and walls, replace outmoded equipment, improve technology and accessibility, remove hazardous materials, improve exterior appearance; return to student life functions.</td>
<td>$8,501,965</td>
</tr>
<tr>
<td>K.8</td>
<td>Modernization of Diamond Physical Education Center</td>
<td>Upgrade classrooms and locker rooms, building systems, fix roofs and walls, replace outmoded equipment, improve technology and accessibility, and remove hazardous materials.</td>
<td>$7,359,616</td>
</tr>
<tr>
<td></td>
<td>Sub-Total Modernization Projects</td>
<td></td>
<td>$82,855,516</td>
</tr>
<tr>
<td>K.9</td>
<td>New Campus Accessibility Improvements</td>
<td>Improve walkways, stairs, ramps, building entrances, safety lighting for compliance to ADA.</td>
<td>$1,200,000</td>
</tr>
<tr>
<td>K.10</td>
<td>Fire Alarm Replacement</td>
<td>Install modern fire alarm system throughout campus.</td>
<td>$1,800,000</td>
</tr>
<tr>
<td>K.11</td>
<td>New Way finding System</td>
<td>Provide comprehensive informational and directional signage system including path-finding signage on roadways.</td>
<td>$1,100,000</td>
</tr>
<tr>
<td></td>
<td>Sub-Total Infrastructure Projects</td>
<td></td>
<td>$4,100,000</td>
</tr>
<tr>
<td>K.12</td>
<td>Addition to Student Center</td>
<td>Add space for group and individual study areas, clubs, and meeting rooms.</td>
<td>$3,300,000</td>
</tr>
<tr>
<td>K.13</td>
<td>New Child Care / Development Center</td>
<td>Provide state-of-the-art training and teaching facility with childcare services.</td>
<td>$4,200,000</td>
</tr>
<tr>
<td>Proj. #</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Cost Allocation</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>K.14</td>
<td>New Entrance Plaza and Enhanced Perimeter Landscaping</td>
<td>Create a new "front door" and identifying landscape feature at the corner of Sir Francis Drake and College Ave. Requires demolition of the Macquarie. Retain redwood copse. Donor opportunities.</td>
<td>$2,400,000</td>
</tr>
<tr>
<td>K.15</td>
<td>New Facilities Management Center</td>
<td>Develop consolidated, efficient, climate-controlled purchasing, shipping and receiving, warehouse, maintenance and grounds facility. Opens up space on campus and removes small dilapidated structures.</td>
<td>$9,600,000</td>
</tr>
<tr>
<td>K.16</td>
<td>New Multi-Purpose Academic & Support Facility</td>
<td>Replace Administration, Olney Hall, and Business Management with new student services facility for "one-stop-shop" processing, classrooms & offices, updated administrative suite, Olney theater replacement. New face along College Ave. will give presence to COM at major corner.</td>
<td>$23,237,500</td>
</tr>
<tr>
<td>K.17</td>
<td>Campus Landscape Renovation, Amphitheater, & Creek Bank Improvement</td>
<td>Upgrade overgrown but exceptional landscape, construct a student-gathering place at Student Center, enhance banks of Corte Madera Creek as a feature of the campus. Donor opportunities.</td>
<td>$3,600,000</td>
</tr>
<tr>
<td>K.18</td>
<td>New Campanile</td>
<td>Recapture an icon of the original campus with a vertical feature that helps establish a sense of place on the central green. Donor opportunity.</td>
<td>$1,375,000</td>
</tr>
<tr>
<td>Proj. #</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Cost Allocation</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>K.19</td>
<td>New Learning Resource Center</td>
<td>Create a modern library, research and learning center with increased learning assistance and study areas, computer access. Requires demolition of Dickson Hall, Dance/Landscape Building, and Disabled Students Center; replace functions in new facility.</td>
<td>$28,875,000</td>
</tr>
<tr>
<td>K.20</td>
<td>New Parking Structure 1 - 500 to 1000 cars</td>
<td>Locate along College Ave. south of creek in current parking lot, displace temporary buildings; consider retail space along College Ave. frontage.</td>
<td>$13,200,000</td>
</tr>
<tr>
<td>K.23</td>
<td>General Purpose Academic Facility</td>
<td>Long-term classroom, offices, and support spaces; space could be used as swing space during renovations; consider adjacent to Garage #1.</td>
<td>$9,900,000</td>
</tr>
</tbody>
</table>

Sub-Total New Construction Projects: $99,687,500

TOTAL for Kentfield: $187,093,016

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I.1</td>
<td>Site, Roadways, Infrastructure Development Plans and Impact Reports</td>
<td>Detailed project implementation planning for environmental impacts, project definitions, finalizing master plan, program management mobilization.</td>
<td>$330,000</td>
</tr>
</tbody>
</table>

Sub-Total Preparatory Projects: $330,000

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I.2</td>
<td>Modernization of Pomo Cluster</td>
<td>Upgrade classrooms and labs, building systems, fix roofs and walls, replace outmoded equipment, improve technology and accessibility, remove hazardous materials, improve exterior appearance.</td>
<td>$26,789,814</td>
</tr>
<tr>
<td>Proj. #</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Cost Allocation</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>I.3</td>
<td>Capital Preservation of Ohlone Cluster</td>
<td>Preventive maintenance to forestall further deterioration, replace expired building systems, fix roofs and walls, improve exterior appearance.</td>
<td>$6,143,068</td>
</tr>
<tr>
<td>I.4</td>
<td>Capital Preservation of Miwok Cluster</td>
<td>Preventive maintenance to forestall further deterioration, replace expired building systems, fix roofs and walls, improve exterior appearance.</td>
<td>$6,093,697</td>
</tr>
<tr>
<td>I.5</td>
<td>Modernization of Administrative Center, Children's Center</td>
<td>Upgrade offices and meeting rooms, building systems, fix roofs and walls, replace outmoded equipment, improve technology and accessibility, remove hazardous materials, improve exterior appearance, enhance playground and training facilities.</td>
<td>$3,840,356</td>
</tr>
<tr>
<td>I.6</td>
<td>Capital Preservation of Library</td>
<td>Preventive maintenance to forestall further deterioration, replace expired building systems, fix roofs and walls, improve exterior appearance.</td>
<td>$1,589,082</td>
</tr>
<tr>
<td>I.7</td>
<td>Capital Renewal and Expansion of Central Plant</td>
<td>Upgrade outmoded equipment and increase energy efficiency, prepare for expanded loads from new facilities.</td>
<td>$1,540,000</td>
</tr>
<tr>
<td>I.8</td>
<td>Modernization of Bolinas Marine Biology Lab</td>
<td>Major renovation to extend life of marine facilities, upgrade classroom, lab, and boat maintenance facilities.</td>
<td>$607,485</td>
</tr>
<tr>
<td></td>
<td>Sub-Total Modernization Projects</td>
<td></td>
<td>$46,603,502</td>
</tr>
<tr>
<td>I.9</td>
<td>Fire Safety System Project</td>
<td>Install modern fire alarm and protection/suppression systems throughout campus.</td>
<td>$3,190,000</td>
</tr>
<tr>
<td>I.10</td>
<td>Gas Main Replacement</td>
<td>Replace deteriorated and unsafe piping.</td>
<td>$1,650,000</td>
</tr>
<tr>
<td>I.11</td>
<td>Campus Accessibility Improvements</td>
<td>Improve walkways, stairs, ramps, building entrances, safety lighting for compliance to ADA.</td>
<td>$1,200,000</td>
</tr>
<tr>
<td>Proj. #</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Cost Allocation</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>I.12</td>
<td>New Way finding System</td>
<td>Provide comprehensive informational and directional signage system including path-finding signage on roadways.</td>
<td>$1,200,000</td>
</tr>
<tr>
<td>I.13</td>
<td>New Pedestrian Bridges (3) and Entrance Gate Feature</td>
<td>Link parking lots to each education center (cluster) with pedestrian bridge, safety lighting, enhanced visibility and destination recognition.</td>
<td>$660,000</td>
</tr>
<tr>
<td>I.14</td>
<td>Enhanced Entrance Road Landscaping</td>
<td>Enhance sense of arrival and presentation of campus as a vital and valuable community asset.</td>
<td>$275,000</td>
</tr>
<tr>
<td></td>
<td>Sub-Total Infrastructure Projects</td>
<td></td>
<td>$8,175,000</td>
</tr>
<tr>
<td>I.15</td>
<td>New Community / Conference Center</td>
<td>Proposed in original master plan, center would contain theater, large meeting room, classrooms, and community and senior education focused facilities; shared with Educational Park institutions.</td>
<td>$9,900,000</td>
</tr>
<tr>
<td>I.16</td>
<td>New Commons/Connector/Quad (links all clusters, enhances existing open space)</td>
<td>Existing green space and walkways are underdeveloped and inadequate; link the several clusters and enhance setting for the multi-tenant Educational Park.</td>
<td>$550,000</td>
</tr>
<tr>
<td>I.17</td>
<td>New College of Marin Building at Pomo Cluster</td>
<td>Provide new, appropriate, modern educational space for consolidated COM functions to augment Pomo cluster facilities.</td>
<td>$13,200,000</td>
</tr>
<tr>
<td>I.18</td>
<td>Planetarium and Observatory</td>
<td>Construct planetarium theater and observatory facility; shared asset with community and K-12 schools. Donor opportunity.</td>
<td>$3,300,000</td>
</tr>
<tr>
<td>I.19</td>
<td>New Amphitheater and Clock Tower</td>
<td>Enhance Commons with vertical icon and gathering / performance space. Donor opportunity.</td>
<td>$1,375,000</td>
</tr>
<tr>
<td></td>
<td>Sub-Total New Construction Projects</td>
<td></td>
<td>$28,325,000</td>
</tr>
<tr>
<td></td>
<td>TOTAL for Indian Valley</td>
<td></td>
<td>$83,433,502</td>
</tr>
<tr>
<td></td>
<td>GRAND TOTAL</td>
<td></td>
<td>$267,326,518</td>
</tr>
</tbody>
</table>
Project List Summary Descriptions & Graphic Representations

The projects have been organized to reflect the bond measure resolution and preferred presentation to the voters for clarity of intent and value for the District. The following are one-page summaries for each of the proposed projects describing approximate size, rough order of magnitude (ROM) budget, scope of work, and necessary sequencing for the projects. Most projects, where appropriate, are illustrated with diagrams superimposed on a pictorial map of the campus. The scope of work is first described in a brief narrative and then, within a grid framework, the major steps or tasks needed to accomplish the project are listed in order. Each task is categorized as to whether it primarily is a Study, Site work, or one of several building categories: Demolition of existing facilities, a New structure (including replacements), Renovation of existing facilities, and tenant Moves, either to vacate a building to allow major work, or to occupy a newly prepared facility.

The priority order and the specific content of the project scope are subject to revision as deliberations proceed, but the information presented herein is a fair representation of the overall goals and specific projects as understood at this time.
Project No. K.1

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Project Implementation Planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
<td>Kentfield Campus, entire site, all affected facilities</td>
</tr>
<tr>
<td>Size:</td>
<td>N/A</td>
</tr>
<tr>
<td>Estimated Cost:</td>
<td>$500,000</td>
</tr>
<tr>
<td>Time Frame:</td>
<td>6 months</td>
</tr>
</tbody>
</table>

Description:
First project to be accomplished before others should begin. Project mobilization requires establishing program management team and procedures, scope confirmation, existing conditions documentation, site organization into construction zones, and updated scheduling. Thorough investigation of all utility and transportation systems must precede initial projects to insure adequate services and coordinate upgrades and disruptions with agencies and service providers. Any environmental or negative impact statements should be conducted to clear any concerns and allow permitting to proceed. Finalize master plan documentation and drawings to incorporate bond referendum scope.

<table>
<thead>
<tr>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Conduct thorough mapping and investigation of all utility systems, both underground and overhead, and define rated capacities, current utilization, and available capacity to support new facilities. (Verify adequacy of infrastructure components as part of individual projects.)

2. Update master plan to reflect bond program activities.

3. Establish project parcels and construction zones, phasing schedules, project interaction and interference evaluations, and management procedures.

4. Prepare any required impact statements for roadway and entrance improvements, storm water management, etc.

5. Coordinate with local governments, agencies, and utility providers to make them aware of projects and determine offsite impacts and work they will need to provide.

6. Develop public information campaign to provide progress reports and information to the public throughout duration of bond project.

Pre-requisites:
- Selection of program management team.

Follow-ons:
- Continuation of program management services.
Project No. K.2

Project Name: Modernization of Learning Resource Center, Conversion to Technology Center

Location: Kentfield Campus, existing Learning Resource Center Building

Size: 66,000 gsf renovation and 10,000 gsf new

Estimated Cost: $16,454,755

Time Frame: 33 to 36 months

Description: Upgrade building systems and repair deficiencies, replace outmoded equipment, improve technology and accessibility, remove hazardous materials. Renovate to new use as Technology focused facility with classrooms, offices, computer labs, and workrooms to support campus technology operations and redesign exterior.

<table>
<thead>
<tr>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move LRC to new building.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Construct additions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Abate any hazardous materials.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Renovate and modernize existing facility.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Move displaced functions into renovated building.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pre-requisites:
- Provision of swing space for temporary relocation for functions displaced by construction.
- Construct new Learning Resource Center.

Follow-ons:
- Redevelop plaza in front.
Legend

Building Upgrades
Project No. K.3

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Modernization of Harlan Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
<td>Kentfield Campus</td>
</tr>
<tr>
<td>Size:</td>
<td>25,651 gsf</td>
</tr>
<tr>
<td>Estimated Cost:</td>
<td>$5,294,375</td>
</tr>
<tr>
<td>Time Frame:</td>
<td>27 to 33 months</td>
</tr>
</tbody>
</table>

Description: Upgrade classrooms and labs, building systems, fix roofs and walls, replace outmoded equipment, improve technology and accessibility, remove hazardous materials, and improve exterior appearance.

<table>
<thead>
<tr>
<th>Study Site</th>
<th>Demolition</th>
<th>New Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1. Relocate functions to swing space.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Abate hazardous materials.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3. Renovate and modernize, perhaps in places.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4. Move displaced functions back into building.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Pre-requisites:
- Provision of swing space for temporary relocation of functions displaced by construction.
- Coordinate with infrastructure and adjacent projects.

Follow-ons:
-
Legend

Building Upgrades
Project No. K.4

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Modernization of Fusselman Hall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
<td>Kentfield Campus</td>
</tr>
<tr>
<td>Size:</td>
<td>14,717 gsf</td>
</tr>
<tr>
<td>Estimated Cost:</td>
<td>$8,014,370</td>
</tr>
<tr>
<td>Time Frame:</td>
<td>24 to 30 months</td>
</tr>
</tbody>
</table>

Description:
Upgrade classrooms and offices, renew building systems, fix roofs and walls, replace outmoded equipment, improve technology and accessibility, remove hazardous materials, and recapture original architectural style. Tie into landscaping and accessibility projects for the Commons and new LRC on the west side.

<table>
<thead>
<tr>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Pre-requisites:
- Perform historic documentation and research.
- Provision of swing space for temporary relocation of functions displaced by construction.
- Coordinate with adjacent projects.

Follow-ons:
-
Legend

- Building Upgrades
Project No. K.5

Project Name: Modernization of Science Center

- **Location:** Kentfield Campus
- **Size:** 50,837 gsf
- **Estimated Cost:** $18,135,816
- **Time Frame:** 27 to 33 months

Description: Upgrade classrooms, offices and labs; replace and upgrade building systems, renovate labs to state-of-the-art teaching facilities with appropriate ventilation and safety systems, fix roofs and walls, replace outmoded equipment, improve technology and accessibility, remove hazardous materials, improve exterior appearance, capture additional space from underused courtyards. May require several phases to minimize disruption of classes.

<table>
<thead>
<tr>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Pre-requisites:
- Coordinate with timing of lab work in Harlan Center.
- Provision of swing space for temporary relocation of functions displaced by construction.
- Coordinate with parking and facilities management projects.

Follow-ons:
-
Legend

[Symbol] Building Upgrades
Project No. K.6

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Modernization of Fine Arts Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
<td>Kentfield Campus</td>
</tr>
<tr>
<td>Size:</td>
<td>79,636 gsf</td>
</tr>
<tr>
<td>Estimated Cost:</td>
<td>$19,094,620</td>
</tr>
<tr>
<td>Time Frame:</td>
<td>24 to 30 months</td>
</tr>
</tbody>
</table>

Description: Upgrade classrooms, theater, offices, and studios; replace building systems, fix roofs and walls, replace outmoded equipment, improve technology and accessibility, remove hazardous materials, improve exterior appearance, improve lobby and entrance plaza, improve circulation between wings.

<table>
<thead>
<tr>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Pre-requisites:
- Provision of swing space for temporary relocation of functions displaced by construction.
- Provision for alternate theater venues.

Follow-ons:
-
Legend

Building Upgrades

KENTFIELD CAMPUS - WEST
K.6 - Capital Renewal / Fine Arts Center
Project No. K.7

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Modernization of Student Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
<td>Kentfield Campus</td>
</tr>
<tr>
<td>Size:</td>
<td>36,227 gsf</td>
</tr>
<tr>
<td>Estimated Cost:</td>
<td>$8,501,965</td>
</tr>
<tr>
<td>Time Frame:</td>
<td>24 to 30 months</td>
</tr>
</tbody>
</table>

Description: Upgrade classrooms, meeting spaces, and offices; renew building systems, fix roofs and walls, replace outmoded equipment, improve technology and accessibility, remove hazardous materials, improve exterior appearance; return to student life functions.

Study	Site	Demolition	New	Renovation	Move
1. Relocate functions to swing space or new home. | | | | | X |
2. Abate hazardous materials. | | X | | | |
3. Renovate in phases. | | | X | | |
4. Move displaced functions back into renovated space. | | | | | X |

Pre-requisites:
- Completion of student services offices in new facility to permanently off-load from Student Center.
- Provision of swing space for temporary relocation of functions displaced by construction.
- Coordinate with Amphitheater and Commons enhancement projects.

Follow-ons:
-
Legend

- Building Upgrades

KENTFIELD CAMPUS - WEST

K.7- Capital Renewal / Student Services Center
Project Name: Modernization of Diamond Physical Education Center

- **Location:** Kentfield Campus
- **Size:** 36,932 gsf
- **Estimated Cost:** $7,359,616
- **Time Frame:** 24 to 30 months

Description: Upgrade classrooms, gymnasium, and locker rooms; renew building systems, fix roofs and walls, replace outmoded equipment, improve technology and accessibility, remove hazardous materials.

<table>
<thead>
<tr>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Pre-requisites:
- Provisions for locker rooms being off-line during renovation.
- Provision for alternate venues for sports.

Follow-ons:
-
KENTFIELD CAMPUS - EAST

K.8 - Modernization of Diamond Physical Education Center

Legend

[Stripes] Building Upgrades
Project No. K.9

Project Name: New Campus Accessibility Improvements

Location: Kentfield Campus
Size: N/A
Estimated Cost: $1,200,000
Time Frame: In phases

Description: Improve walkways, stairs, ramps, building entrances, safety lighting for compliance to ADA.

Pre-requisites: Coordinate with building projects and landscape projects.

Follow-ons:

1. Site improvement projects in phases.
Project No. K.10

Project Name: **Fire Alarm Replacement**

Location: Kentfield Campus

Size: N/A

Estimated Cost: $1,800,000

Time Frame: In phases

Description: Install modern fire alarm system throughout campus. Consider timing of renovation work in the distant future that might impact a new system versus safety levels in the near term.

<table>
<thead>
<tr>
<th>Study</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

1. Install new system in phases.

Pre-requisites:
- Coordinate installation with building projects.

Follow-ons:
- Maintain connectivity of systems across the campus.
Project No. K.11

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>New Way finding System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
<td>Kentfield Campus</td>
</tr>
<tr>
<td>Size:</td>
<td>N/A</td>
</tr>
<tr>
<td>Estimated Cost:</td>
<td>$1,100,000</td>
</tr>
<tr>
<td>Time Frame:</td>
<td>In phases</td>
</tr>
</tbody>
</table>

Description: Provide comprehensive informational and directional signage system including path-finding signage on roadways. Consider lighting and power requirements and audio/visual enhancements for the disabled. Work with State and County for off-campus sign improvements.

<table>
<thead>
<tr>
<th></th>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pre-requisites:
- Coordinate with renovation and construction projects.

Follow-ons:
- Protect and maintain sign during subsequent projects.
- Consider in-house sign shop or outsourcing contracts.
Project No. K.12

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Addition to Student Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
<td>Kentfield Campus</td>
</tr>
<tr>
<td>Size:</td>
<td>10,000 gsf</td>
</tr>
<tr>
<td>Estimated Cost:</td>
<td>$3,300,000</td>
</tr>
<tr>
<td>Time Frame:</td>
<td>21 to 27 months</td>
</tr>
</tbody>
</table>

Description:
Add space for group and individual study areas, student organizations, and meeting rooms; food service areas. Enhance interaction with Corte Madera Creek.

<table>
<thead>
<tr>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Pre-requisites:
- Coordinate with renovation of Student Center.
- Coordinate with improvements to Corte Madera Creek.

Follow-ons:
-
Legend

- New Construction

KENTFIELD CAMPUS - WEST

K.12 - Addition to Student Center
Project No. K.13

Project Name: New Child Care/Development Center

Location: Kentfield Campus

Size: N/A

Estimated Cost: $4,200,000

Time Frame: 24 to 30 months

Description: Provide state-of-the-art training and teaching facility with child care services. Location to be determined (may be part of new multi-purpose building, LRC, or over at physical education on East Campus).

<table>
<thead>
<tr>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Pre-requisites:

Follow-ons:

Project No. K.14

Project Name: New Entrance Plaza and Enhanced Perimeter Landscaping

Location: Kentfield Campus

Size: N/A

Estimated Cost: $2,400,000

Time Frame: 18 to 24 months

Description:
Create a new “front door” and identify landscape feature at the corner of Sir Francis Drake Blvd. and College Ave. Requires demolition of the Taqueria. Retain redwood copse. Donor opportunities. Continue special identifying landscape around campus perimeter, connect East Campus with Main Campus.

1. Design corner feature and landscape treatments. X
2. Seek donor(s) to replace/augment bond funds. X
3. Construct in phases. X

Pre-requisites:
- Coordinate with adjacent building projects and campus improvements.

Follow-ons:
KENTFIELD CAMPUS - WEST

K.14 - New Entrance Plaza and Enhanced Perimeter Landscaping

Legend

- Enhanced Perimeter Entries
- New Main Entrance
Project No. K.15

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>New Facilities Management Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
<td>Kentfield Campus</td>
</tr>
<tr>
<td>Size:</td>
<td>30,000</td>
</tr>
<tr>
<td>Estimated Cost:</td>
<td>$9,600,000</td>
</tr>
<tr>
<td>Time Frame:</td>
<td>24 to 30 months</td>
</tr>
</tbody>
</table>

Description: Develop consolidated, efficient, climate-controlled purchasing, shipping and receiving, warehouse, and maintenance and grounds facility for Physical Plant operations. By locating it on the East Campus, it opens up space on campus by removing small dilapidated structures and removing most delivery traffic (trucks) from the campus core and adjacent streets. However, locating this facility in a flood zone will require mitigating tasks.

<table>
<thead>
<tr>
<th></th>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Pre-requisites:
- Ascertain flood plain elevation and any mitigation requirements to develop the site.

Follow-ons:
- Clean out previous locations and demolish vacated structures.
Legend

- New Construction

KENTFIELD CAMPUS - EAST

EAST CAMPUS

K.15 - New Facilities Management Center
Project No. K.16

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>New Multi-Purpose Academic & Support Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
<td>Kentfield Campus</td>
</tr>
<tr>
<td>Size:</td>
<td>65,000</td>
</tr>
<tr>
<td>Estimated Cost:</td>
<td>$23,237,500</td>
</tr>
<tr>
<td>Time Frame:</td>
<td>30 to 36 months</td>
</tr>
</tbody>
</table>

Description:
Replace Administration, Olney Hall, and Business Management with new Student Services facility for “one-stop-shop” processing, classrooms, and offices, updated administrative suite, Olney theater replacement. New face along College Ave. will give presence to COM at major corner. Consider including new Child Care/Development Center. Create new quad in concert with new corner feature, red-wood copses, and Harlan Center.

1. Relocate functions to swing space.
2. Demolish existing structure. X
3. Construct new facility. X
4. Construct new quad. X
5. Repair and enhance site stairs along College Ave. with accessible ramps, etc. X
6. Move displaced functions into new facilities. X

Pre-requisites:
- Document for campus archives the buildings to be demolished.
- Provision of swing space for temporary relocation of functions displaced by construction.
- Coordinate with New Entrance and Perimeter Landscape Project.

Follow-ons:
- Continue perimeter landscape, new pavement, lighting, etc. along College Ave.
Legend

- New Construction
Project No. K.17

Project Name: Campus Landscape Renovation, Amphitheater, and Creek Bank Improvement

Location:	Kentfield Campus
Size:	N/A
Estimated Cost:	$3,600,000
Time Frame:	In phases: Landscape – phased; Amphitheater 18 months; Creek improvements 36 + months (anticipates permitting delays).

Description: Upgrade overgrown but exceptional landscape, construct a student-gathering place (aka “amphitheater”) on the Commons at the Student Center. Enhance the banks of Corte Madera Creek as a feature of the campus. These projects offer donor opportunities. These need to work together to form a coordinated environment but may be executed separately as funding and permitting allow.

1. Research and record site landscaping history.	X
2. Undertake landscape renovation.	X
3. Construct amphitheater or student gathering plaza.	X
4. Work with neighborhoods, activists, and Corps of Engineers to develop a viable plan for a creek within the campus boundaries.	X
5. Construct new bank improvements along the creek.	X

Pre-requisites:
- Coordinate with other site improvement projects and adjacent building projects.

Follow-ons:
- Establish an on-going maintenance program and funding plan.
KENTFIELD CAMPUS - WEST

K.17 - Campus Landscape Renovation, Amphitheater, and Creek Bank Improvement

Legend
- New Construction
- Creek Improvements
- Landscape Renovation
Project No. K.18

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>New Campanile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
<td>Kentfield Campus</td>
</tr>
<tr>
<td>Size:</td>
<td>N/A</td>
</tr>
<tr>
<td>Estimated Cost:</td>
<td>$1,375,000</td>
</tr>
<tr>
<td>Time Frame:</td>
<td>18 to 24 months</td>
</tr>
</tbody>
</table>

Description: Recapture an icon of the original campus with a vertical feature that helps establish a sense of place on the central green. Donor opportunity.

<table>
<thead>
<tr>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Construct tower.

Pre-requisites: •

Follow-ons: •
Legend

- New Construction
Project No. K.19

Project Name: **New Learning Resource Center**

- **Location:** Kentfield Campus
- **Size:** 75,000 gsf
- **Estimated Cost:** $28,875,000
- **Time Frame:** 30 to 36 months

Description:
Create a modern library, research and learning center with increased learning assistance and study areas, computer access. Requires demolition of Dickson Hall, Dance/Landscape Building, and Disabled Students Center; replace functions in new facility.

<table>
<thead>
<tr>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Pre-requisites:
- Document for archives the facilities to be demolished.
- Provision of swing space for temporary relocation of functions displaced by construction.
- Coordinate with adjacent projects.

Follow-ons:
- Move LRC into new facility.
Legend

- New Construction
Project No. K.20

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>New Parking Structure – 500 to 1,000 cars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
<td>Kentfield Campus</td>
</tr>
<tr>
<td>Size:</td>
<td>330,000 gsf</td>
</tr>
<tr>
<td>Estimated Cost:</td>
<td>$13,200,000</td>
</tr>
<tr>
<td>Time Frame:</td>
<td>30 to 36 months (anticipates permitting delays)</td>
</tr>
</tbody>
</table>

Description: Locate along College Ave. south of creek in current parking lot, or south edge behind Woodland Mall. Displace temporary buildings. Consider retail space along College Ave. frontage. Build new pedestrian bridge. Bridge could be part of project K.17 improvements to Court Madera Creek. (Potential exists to build a controlled access bridge to link Laurel with Kent through campus for college only service traffic).

<table>
<thead>
<tr>
<th></th>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Pre-requisites:
- Traffic study and flood plain determination.

Follow-ons:
Legend

- Proposed Garages
Project No. K.23

<table>
<thead>
<tr>
<th>Project Name: General Purpose Academic Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location: Kentfield Campus</td>
</tr>
<tr>
<td>Size: 30,000 gsf</td>
</tr>
<tr>
<td>Estimated Cost: $9,900,000</td>
</tr>
<tr>
<td>Time Frame: 24 to 30 months</td>
</tr>
</tbody>
</table>

Description: Long-term classroom, offices, and support spaces; space could be used as swing space during renovations; also consider site adjacent to Garage #1.

Study | **Site** | **Demolition** | **New** | **Renovation** | **Move** |
--- | | | | | |
1. Relocate parking and delivery functions. | | | | | X |
2. Construct new facility. | | | | | X |
3. Enhance streetscape along College Ave. | | | | | X |

Pre-requisites:
- LRC relocation.

Follow-ons:
-
Legend

- New Construction

KENTFIELD CAMPUS - WEST

K.23 - General Purpose Academic Facility
Project No. I.1

Project Name: Project Implementation Planning

Location: Indian Valley Campus, entire site, all affected facilities

Size: N/A

Estimated Cost: $300,000

Time Frame: 6 months

Description:
First project to be accomplished before others should begin. Project mobilization requires establishing program management team and procedures, scope confirmation, existing conditions documentation, site organization into construction zones, and updated scheduling. Thorough investigation of all utility and transportation systems must precede initial projects to insure adequate services and coordinate upgrades and disruptions with agencies and service providers. Any environmental or negative impact statements should be conducted to clear any concerns and allow permitting to proceed. Finalize master plan documentation and drawings to incorporate bond referendum scope.

1. Conduct thorough mapping and investigation of all utility systems, both underground and overhead, and define rated capacities, current utilization, and available capacity to support new facilities. (Verify adequacy of infrastructure components as part of individual projects.)

2. Update master plan to reflect bond program activities.

3. Establish project parcels and construction zones, phasing schedules, project interaction and interference evaluations, and management procedures.

4. Prepare any required impact statements for roadway and entrance improvements, storm water management, etc.

5. Coordinate with local governments, agencies, and utility providers to make them aware of projects and determine offsite impacts and work they will need to provide.

6. Develop public information campaign to provide progress reports and information to the public throughout duration of bond project.

Pre-requisites:
- Selection of program management team.

Follow-ons:
- Continuation of program management services.
Project No. I.2

Project Name: Modernization of Pomo Cluster

Location: Indian Valley Campus

Size: 47,494 gsf

Estimated Cost: $26,789,814

Time Frame: 24 to 30 months

Description: Upgrade classrooms and labs, renew/replace building systems, fix roofs and walls, replace outmoded equipment, improve technology and accessibility, remove hazardous materials, and improve exterior appearance.

<table>
<thead>
<tr>
<th></th>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Pre-requisites:
- Provision of swing space for temporary relocation of functions displaced by construction.

Follow-ons:
-
Legend

- Building Clusters / Zones
- Building Upgrades

INDIAN VALLEY CAMPUS

1.2 - Capital Renewal of Pomo Cluster
Project No. I.3

Project Name: Capital Preservation of Ohlone Cluster

<table>
<thead>
<tr>
<th>Location:</th>
<th>Indian Valley Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size:</td>
<td>20,543 gsf</td>
</tr>
<tr>
<td>Estimated Cost:</td>
<td>$6,143,068</td>
</tr>
<tr>
<td>Time Frame:</td>
<td>18-24 months</td>
</tr>
</tbody>
</table>

Description: Preventive maintenance to forestall further deterioration, replace expired building systems, fix roofs and walls, and improve exterior appearance. May be used as swing space for displaced functions due to construction projects at either IVC or Kentfield.

<table>
<thead>
<tr>
<th>Pre-requisites:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Coordinate with Pomo Cluster renovation and Miwok Cluster.</td>
</tr>
<tr>
<td>• Provision of swing space for temporary relocation of functions displaced by construction.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Follow-ons:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Legend

- Building Clusters / Zones
- Building Upgrades

ININDIAN VALLEY CAMPUS

1.3 - Capital Renewal of Ohlone Cluster
Project No. I.4

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Capital Preservation of Miwok Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
<td>Indian Valley Campus</td>
</tr>
<tr>
<td>Size:</td>
<td>28,410 gsf</td>
</tr>
<tr>
<td>Estimated Cost:</td>
<td>$6,093,697</td>
</tr>
<tr>
<td>Time Frame:</td>
<td>18 to 24 months</td>
</tr>
<tr>
<td>Description:</td>
<td>Preventive maintenance to forestall further deterioration, replace expired building systems, fix roofs and walls, and improve exterior appearance.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Pre-requisites:
- Coordinate with Pomo Cluster renovation and Miwok Cluster.
- Provision of swing space for temporary relocation of functions displaced by construction.

Follow-ons:
Legend

- Building Clusters / Zones
- Building Upgrades

INDIAN VALLEY CAMPUS

1.4 - Capital Renewal of Miwok Cluster
Project No. I.5

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Modernization of Administrative Center, Children’s Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
<td>Indian Valley Campus</td>
</tr>
<tr>
<td>Size:</td>
<td>19,588 gsf</td>
</tr>
<tr>
<td>Estimated Cost:</td>
<td>$3,840,356</td>
</tr>
<tr>
<td>Time Frame:</td>
<td>24 to 30 months</td>
</tr>
<tr>
<td>Description:</td>
<td>Upgrade offices and meeting rooms, renew/replace building systems, fix roofs and walls, replace outmoded equipment, improve technology and accessibility, remove hazardous materials, improve exterior appearance, enhance playground and training facilities.</td>
</tr>
</tbody>
</table>

| Study Site Demolition New Renovation Move |
|---|---|
| 1. Relocate functions to swing space. | X |
| 2. Abate hazardous materials, if any. | X |
| 3. Renovate and modernize in phases. | X |
| 4. Move displaced functions back into renovated space. | X |

Pre-requisites:
- Provision of swing space for temporary relocation of functions displaced by construction.

Follow-ons:
- []
Legend

- Building Clusters / Zones
- Building Upgrades

INDIAN VALLEY CAMPUS

1.5 - Capital Renewal of Administrative Services Cluster

3D/International
Project No. I.6

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Capital Preservation of Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
<td>Indian Valley Campus</td>
</tr>
<tr>
<td>Size:</td>
<td>14,280 gsf</td>
</tr>
<tr>
<td>Estimated Cost:</td>
<td>$1,589,082</td>
</tr>
<tr>
<td>Time Frame:</td>
<td>15 to 21 months</td>
</tr>
<tr>
<td>Description:</td>
<td>Preventive maintenance to forestall further deterioration, replace expired building systems, fix roofs and walls, and improve exterior appearance.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Pre-requisites: ●

Follow-ons: ●
Legend

- Building Clusters / Zones
- Building Upgrades

INDIAN VALLEY CAMPUS

1.6 - Capital Renewal and Remodeling of Library
Project No. I.7

Project Name: Capital Renewal and Expansion of Central Plant

<table>
<thead>
<tr>
<th>Location:</th>
<th>Indian Valley Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size:</td>
<td>2,000 gsf</td>
</tr>
<tr>
<td>Estimated Cost</td>
<td>$1,540,000</td>
</tr>
<tr>
<td>Time Frame:</td>
<td>15 to 21 months</td>
</tr>
</tbody>
</table>

Description: Upgrade outmoded equipment and increase energy efficiency, prepare for expanded loads from new facilities.

<table>
<thead>
<tr>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Research and document equipment, systems, and distribution paths.

2. Renew/replace/renovate equipment, enlarge building.

Pre-requisites:
- Provide for alternative thermal sources.

Follow-ons:
- Provide and monitor energy management system.
Project No. I.8

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Modernization of Bolinas Marine Biology Lab</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Location:</th>
<th>Indian Valley Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size:</td>
<td>3,333 gsf</td>
</tr>
<tr>
<td>Estimated Cost:</td>
<td>$607,485</td>
</tr>
<tr>
<td>Time Frame:</td>
<td>21 to 24 months</td>
</tr>
</tbody>
</table>

Description: Major renovation to extend life of marine facilities, upgrade classroom, lab, and boat maintenance facilities. Anticipate permitting delays.

<table>
<thead>
<tr>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

1. Relocate functions.
2. Renovate boat house, offices, and labs.
3. Move displaced functions back into renovated space.

Pre-requisites:
- Provision of swing space for temporary relocation of functions displaced by construction.
- Research environmental concerns due to construction.

Follow-ons:
-
Project No. I.9

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Fire Safety System Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
<td>Indian Valley Campus</td>
</tr>
<tr>
<td>Size:</td>
<td>N/A</td>
</tr>
<tr>
<td>Estimated Cost:</td>
<td>$3,190,000</td>
</tr>
<tr>
<td>Time Frame:</td>
<td>In phases</td>
</tr>
<tr>
<td>Description:</td>
<td>Install modern fire alarm and protection suppression systems throughout campus.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evaluate requirements and issues of shared facilities.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Install new systems, perhaps in phases.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Pre-requisites:
- Coordinate program with other renovation projects.

Follow-ons:
-
Project No. I.10

Project Name: Gas Main Replacement

Location:	Indian Valley Campus
Size:	N/A
Estimated Cost:	$1,650,000
Time Frame:	6 months

Description: Replace deteriorated and unsafe piping.

<table>
<thead>
<tr>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Pre-requisites:
- Document all utility systems on campus.

Follow-ons:
-
Project No. I.11

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Campus Accessibility Improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
<td>Indian Valley Campus</td>
</tr>
<tr>
<td>Size:</td>
<td>N/A</td>
</tr>
<tr>
<td>Estimated Cost:</td>
<td>$1,200,000</td>
</tr>
<tr>
<td>Time Frame:</td>
<td>In phases</td>
</tr>
</tbody>
</table>

Description: Improve walkways, stairs, ramps, building entrances, safety lighting for compliance to ADA.

<table>
<thead>
<tr>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Pre-requisites:
- Coordinate with renovation and construction projects.

Follow-ons:
-
Project No. I.12

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>New Way finding System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
<td>Indian Valley Campus</td>
</tr>
<tr>
<td>Size:</td>
<td>N/A</td>
</tr>
<tr>
<td>Estimated Cost:</td>
<td>$1,100,000</td>
</tr>
<tr>
<td>Time Frame:</td>
<td>In phases</td>
</tr>
</tbody>
</table>

Description: Provide comprehensive informational and directional signage system including path-finding signage on roadways. Consider lighting and power requirements and audio/visual enhancements for the disabled. Work with State and County for off-campus sign improvements.

<table>
<thead>
<tr>
<th></th>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pre-requisites: • Coordinate with renovation and construction projects.
Follow-ons: • Protect and maintain sign during subsequent projects.
• Consider in-house sign shop or outsourcing contracts.
Project No. I.13

Project Name: New Pedestrian Bridges and Entrance Gate Feature

Location: Indian Valley Campus

Size: N/A

Estimated Cost: $660,000

Time Frame: 9 to 12 months

Description: Link parking lots to each education center (cluster) with pedestrian bridge, safety lighting, enhanced visibility, and destination recognition.

<table>
<thead>
<tr>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Construct campus entrance feature.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Construct bridges and walkways.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pre-requisites:
- Topographic survey and storm water evaluation.
- Coordinate with accessibility projects and construction projects.

Follow-ons:
-
Project No. I.14

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Enhanced Entrance Road Landscaping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
<td>Indian Valley Campus</td>
</tr>
<tr>
<td>Size:</td>
<td>N/A</td>
</tr>
<tr>
<td>Estimated Cost:</td>
<td>$275,000</td>
</tr>
<tr>
<td>Time Frame:</td>
<td>In phases (6 to 9 months)</td>
</tr>
</tbody>
</table>

Description: Enhance sense of arrival and presentation of campus as a vital and valuable community asset. Upgrade irrigation and lighting.

<table>
<thead>
<tr>
<th></th>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Install</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>infrastructure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and plating system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pre-requisites:
- Coordinate with way finding project.

Follow-ons:
-

...
Project No. I.15

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>New Community/Conference Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
<td>Indian Valley Campus</td>
</tr>
<tr>
<td>Size:</td>
<td>30,000 gsf</td>
</tr>
<tr>
<td>Estimated Cost:</td>
<td>$9,900,000</td>
</tr>
<tr>
<td>Time Frame:</td>
<td>24 to 30 months</td>
</tr>
<tr>
<td>Description:</td>
<td>Proposed in original master plan, center would contain theater, large meeting room, classrooms, and community and senior education-focused facilities; shared with Educ. Park institutions.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Study</th>
<th>Site Demolition</th>
<th>New Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Evaluate site, drainage, sustainable design issues.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Construct new facility.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Pre-requisites:
- Coordinate with accessibility and site improvement projects.
- Improved and expanded central plant.
- Completion of infrastructure repairs.

Follow-ons:
-
Legend

- Building Clusters / Zones
- New Construction
Project No. I.16

Project Name: New Commons/Connector/Quad

Location:	Indian Valley Campus
Size:	N/A
Estimated Cost:	$550,000
Time Frame:	9 to 12 months

Description:
Existing green space and walkways are inconsequential; link the several clusters and enhance setting for the multi-tenant educational park.

| 1. Develop enhanced landscaped community green. | X |

Pre-requisites:
- Coordinate with way finding, accessibility, and walkway improvement projects.

Follow-ons:
-
Project No. I.17

<table>
<thead>
<tr>
<th>Project Name: New College of Marin Building at Pomo Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location: Indian Valley Campus</td>
</tr>
<tr>
<td>Size: 40,000 gsf</td>
</tr>
<tr>
<td>Estimated Cost: $13,200,000</td>
</tr>
<tr>
<td>Time Frame: 24 to 30 months</td>
</tr>
<tr>
<td>Description: Provide new, appropriate, modern educational space for consolidated COM functions to augment Pomo cluster facilities.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Evaluate site, drainage, sustainable design issues.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Construct new facility.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Pre-requisites:
- Coordinate with Renovation of Pomo Cluster and site projects.
- Completion of central plant improvements and expansion.
- Completion of infrastructure repairs.

Follow-ons:

Project No. 3.4 Tier: 3

Legend

- Building Clusters / Zones
- New Construction

INDIAN VALLEY CAMPUS

I.17 - New College of Marin Building at Pomo Cluster
Project No. I.18

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Planetarium and Observatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
<td>Indian Valley Campus</td>
</tr>
<tr>
<td>Size:</td>
<td>N/A</td>
</tr>
<tr>
<td>Estimated Cost:</td>
<td>$3,300,000</td>
</tr>
<tr>
<td>Time Frame:</td>
<td>18 to 24 months</td>
</tr>
<tr>
<td>Description:</td>
<td>Construct planetarium theater and observatory facility; shared asset with community and K-12 schools. Donor opportunity.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Determine optimum location for viewing and light interference.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2. Construct new facility.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Pre-requisites: • Coordinate with master plan to insure dark-sky environment.

Follow-ons: •
Project No. I.19

Project Name: New Amphitheater and Clock Tower

Location:	Indian Valley Campus
Size:	N/A
Estimated Cost:	$1,375,000
Time Frame:	15 to 21 months

Description: Enhance Commons with vertical icon and gathering/performance space. Donor opportunity.

<table>
<thead>
<tr>
<th>Study</th>
<th>Site</th>
<th>Demolition</th>
<th>New</th>
<th>Renovation</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Construct amphitheater and tower

Pre-requisites: ● Coordinate with New Commons/Quad project.

Follow-ons: ●
Appendix A: Facility Condition Assessment Executive Summary

The following is the Facility Condition Assessment Executive Summary. It is included for background and continuity of information since it is referenced often in the report. The basic process is outlined, as are many of the assumptions and considerations as well as the findings. The full FCA report contains considerable detail about the individual buildings.
Table of Contents

INTRODUCTION..2

ASSESSMENT OF EXISTING FACILITIES ..5
 Background
 Facilities
 Summary of Findings
 CSI Classifications
 Facility FCI

CAPITAL RENEWAL ...11
 Funding Requirements – 10 Year Renewal Projection
 20 Year Capital Renewal Forecast

CONCLUSIONS ...16

COMET ASSESSMENT ...17
 Level 2 Facilities Assessment Methodology

FILTERS ...18
 Priorities
 Categories
 Adverse Effects

DEFINITIONS ...19

KENTFIELD CAMPUS REPORTS
 Executive Summaries
 Summary Detail

INDIAN VALLEY CAMPUS REPORTS
 Executive Summaries
 Summary Detail
The Foundation for California Community Colleges (FCCC) negotiated a discounted-pricing agreement for facilities condition assessments with 3D/I to document the need for funding to replace and upgrade facilities within California’s community college districts and to assist districts in preparing for bond issues. In summer 2001, the FCCC issued a formal Request for Information in a public newspaper and subsequently reviewed, considered and evaluated the respondents’ experience and quality of work, particularly with higher education clients. The College of Marin (COM) elected to participate in the joint agreement and contracted 3D/I to assess and document the facility repair, rehabilitation and modernization requirements relative to the COM.

Kentfield Campus and Indian Valley Campus

Several 3D/I planning and construction professionals performed an Existing Facility Assessment over a period of about three weeks during the fall of 2002. 3D/I visually inspected 15 of the existing facilities at Kentfield Campus and the four clusters at Indian Valley Campus to identify their condition and to estimate the repair and renovation cost. The Assessment of Existing Facilities section reports the current physical condition of these buildings, totaling approximately 357,599 gross square feet and 150,770 gross square feet respectively.

This report presents 3D/I’s findings. These findings will provide COM with the technical information needed to make informed decisions regarding the disposition of existing facility maintenance funds, as well as, the need and cost of a capital improvement program.

Existing Facility Assessment Findings

The estimated initial cost to repair the facilities at the Kentfield Campus totals approximately $45 million and the facilities at Indian Valley College totals approximately $19.6 million. The generally accepted range for Facility Condition Index (FCI) for establishing a building’s condition is shown below. This standard has been adopted by the Building Owners and Managers Association, the Council on Education Facilities, the American University Planners Association and a number of other national facilities groups.

<table>
<thead>
<tr>
<th>Condition</th>
<th>FCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>0 to 5%</td>
</tr>
<tr>
<td>Fair</td>
<td>6 to 10%</td>
</tr>
<tr>
<td>Poor</td>
<td>10% and above</td>
</tr>
</tbody>
</table>

The results of our assessment are summarized in the FCI table on pages eight and 9.
Kentfield Campus

The overall FCI rating of 36.40% for the buildings assessed at the Kentfield Campus means that, in general, the facilities are in extremely poor condition. This is appears to be much worse than other Community College campuses built at approximately the same time.

No buildings have an FCI less than 10% at Kentfield.

Two buildings have FCI ratings in excess of 50%. Only two buildings have an FCI rating under 20%. When the FCI approaches 70% the building should be considered for replacement, as opposed to investing substantial money to repair a 30 to 40-year-old building with systems well beyond their useful lives.

A more detailed discussion on the methodology and findings for each of the District buildings is provided in the Assessment of Existing Facilities section of this report.

Indian Valley Campus

The overall FCI rating of 37.42% for the buildings assessed at Indian Valley means that, in general, the facilities are in extremely poor condition, especially considering they are all less than 30 years old. Only four buildings have an FCI less than 30% and no buildings have an FCI of less than 10% the range for good or fair condition.

A more detailed discussion on the methodology and findings for each of the District buildings is provided in the Assessment of Existing Facilities section of this report.
In early 2002, College of Marin authorized 3D/I to perform a district-wide, comprehensive facility condition survey assessment. The costs associated with correction of deficiencies can be identified as follows:

Deferred Maintenance – maintenance work that has been deferred on a planned or unplanned basis due to lack of funds in the annual budget cycle, excluding normal maintenance that has already been scheduled, planned or funded within the current budget cycle.

Capital Renewal – future renewal requirements for building systems that reach the end of their expected useful life.

The comprehensive facilities assessment of COM is a detailed visual, non-destructive inspection of each building. 3D/I’s software, COMET (Condition Management Estimation Technology), is used to record all deficiencies. The survey assessment is a comprehensive room-by-room inventory of defined key elements and characteristics. The result of the inspection is a populated database that catalogs every deficiency that costs more than a certain value.

3D/I is developing an information technology project called the Facility Utilization, Space Inventory Options Net (FUSION) in parallel with the FCCC-3D/I agreement for discounted facility condition assessment services. This project will design and deliver a centralized database and software in which the facility condition assessment data will reside and be used by the districts to better manage their real asset portfolio.

Approach

The assessment teams were comprised of several construction and/or design professionals with expertise appropriate to the systems and/or components they were charged to assess. For each building, the teams collected much of the facility’s historical information prior to visiting the facility. This research included a review of existing drawings, meetings with the campus maintenance staff, and a review of previous renovations. The assessment teams then conducted a site visit to verify data already gathered and to record additional information found during the inspection. Based on visual observations and discussions with facility occupants and maintenance staff, the assessors determined what deficiencies existed and the general conditions of key building systems. They then wrote a description of the facility, including an overview of the facility’s construction, building systems and general condition.
Background

The California Community Colleges Chancellor’s Office encouraged districts within the CCC System to take advantage of the discounted assessment service to generate an unbiased appraisal of the school’s physical conditions and to obtain recommendations for building system replacement based on priorities and expected useful life.

Facilities

One of the findings of the assessment process is the determination of the Facility Condition Index (FCI). The FCI is a ratio of the estimated cost to repair the identified deficiencies divided by the estimated replacement value of the facility. It describes the relative physical condition of a building, its components or a group of buildings against a cost model of the original building as if it were at the beginning of its useful life, fully “renewed” to today’s standards.

Summary of Findings

The costs presented below summarize the assessment findings for the current deficiencies. The costs include additional costs, including the normal “soft costs”, associated with a rehabilitation project. These costs can change based on the packaging of repair and renovation projects.

<table>
<thead>
<tr>
<th>Campus</th>
<th>Estimated Repair Cost</th>
<th>Gross Square Feet</th>
<th>FCI%</th>
<th>Replacement Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indian Valley</td>
<td>$18,724,845</td>
<td>150,770</td>
<td>37.42%</td>
<td>$50,035,914</td>
</tr>
<tr>
<td>Raw Cost</td>
<td>$9,286,811</td>
<td></td>
<td></td>
<td>$37,026,576</td>
</tr>
<tr>
<td>Additional Cost</td>
<td>$9,438,034</td>
<td></td>
<td></td>
<td>$13,009,338</td>
</tr>
</tbody>
</table>

Based on current industry standards, the campus FCI indicates that the facilities are in poor condition.

<table>
<thead>
<tr>
<th>Campus</th>
<th>Estimated Repair Cost</th>
<th>Gross Square Feet</th>
<th>FCI%</th>
<th>Replacement Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kentfield</td>
<td>$45,073,089</td>
<td>357,599</td>
<td>36.40%</td>
<td>$123,833,520</td>
</tr>
<tr>
<td>Raw Cost</td>
<td>$22,354,538</td>
<td></td>
<td></td>
<td>$91,636,804</td>
</tr>
<tr>
<td>Additional Cost</td>
<td>$22,718,549</td>
<td></td>
<td></td>
<td>$32,196,716</td>
</tr>
</tbody>
</table>

Based on current industry standards, the campus FCI indicates that the facilities are in poor condition.
Indian Valley Building System Classifications

The following chart gives a breakdown of the recorded deficiencies by their respective building systems for the Indian Valley Campus.

In general, the majority of the costs identified in the assessment are for mechanical and electrical systems. Within mechanical systems, most costs are for adding or replacing chillers, boilers and associated components such as air handlers and ductwork. The majority of the electrical system costs are for replacing lighting fixtures and providing additional capacity to the main service and branch circuits.
Kentfield Campus Building System Classifications

The following chart gives a breakdown of the recorded deficiencies by their respective building systems for the Kentfield Campus.

In general, the majority of the costs identified in the assessment are for mechanical and electrical systems. Within mechanical systems, most costs are for adding or replacing chillers, boilers and associated components such as air handlers and ductwork. The majority of the electrical system costs are for replacing lighting fixtures and providing additional capacity to the main service and branch circuits.
Indian Valley Campus Facility FCI by Type Structure

The following is a list of the campus facilities grouped by building number that displays the current Repair Cost, Replacement Cost and FCI.

<table>
<thead>
<tr>
<th>Facility</th>
<th>Gross SF</th>
<th>Year Built</th>
<th>Repair Cost</th>
<th>Replacement Cost</th>
<th>FCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indian Valley Campus</td>
<td>150,770</td>
<td>1975</td>
<td>$18,724,845</td>
<td>$50,035,914</td>
<td>37.42%</td>
</tr>
<tr>
<td>1 Pomo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 Auto Body and Fender</td>
<td>5,770</td>
<td>1976</td>
<td>$731,753</td>
<td>$1,874,841</td>
<td>39.03%</td>
</tr>
<tr>
<td>02 Auto Technology Lab</td>
<td>8,824</td>
<td>1976</td>
<td>$642,660</td>
<td>$2,867,175</td>
<td>22.41%</td>
</tr>
<tr>
<td>03 Medical Asst/Class/Lab/Ofc.</td>
<td>8,900</td>
<td>1976</td>
<td>$1,384,235</td>
<td>$2,984,377</td>
<td>46.38%</td>
</tr>
<tr>
<td>04 Indust. Tech/Machine & Mtls</td>
<td>5,300</td>
<td>1976</td>
<td>$564,972</td>
<td>$1,877,214</td>
<td>30.10%</td>
</tr>
<tr>
<td>05 Classrooms/Food Vending</td>
<td>5,200</td>
<td>1976</td>
<td>$688,661</td>
<td>$1,689,632</td>
<td>51.41%</td>
</tr>
<tr>
<td>06 Geol/Geog/Bio/Chem</td>
<td>9,000</td>
<td>1976</td>
<td>$1,653,815</td>
<td>$3,017,910</td>
<td>54.80%</td>
</tr>
<tr>
<td>07 Class/Office/ESL</td>
<td>4,500</td>
<td>1976</td>
<td>$690,212</td>
<td>$1,462,181</td>
<td>47.20%</td>
</tr>
<tr>
<td>2 Administrative Services</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08 Admissions/Student Services</td>
<td>3,700</td>
<td>1975</td>
<td>$388,222</td>
<td>$1,243,330</td>
<td>31.22%</td>
</tr>
<tr>
<td>09 Admin. Services/Health Cntr</td>
<td>3,600</td>
<td>1975</td>
<td>$363,881</td>
<td>$1,209,726</td>
<td>30.08%</td>
</tr>
<tr>
<td>10 ASIVC Office</td>
<td>1,464</td>
<td>1975</td>
<td>$203,473</td>
<td>$482,195</td>
<td>42.20%</td>
</tr>
<tr>
<td>11 Info. Services Center</td>
<td>5,000</td>
<td>1977</td>
<td>$476,154</td>
<td>$1,767,068</td>
<td>26.95%</td>
</tr>
<tr>
<td>12 Book Store/ Child Care</td>
<td>5,804</td>
<td>1975</td>
<td>$599,503</td>
<td>$1,950,347</td>
<td>28.69%</td>
</tr>
<tr>
<td>3 Miwok</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 Art Labs/Gallery/Classrooms</td>
<td>9,000</td>
<td>1975</td>
<td>$1,038,817</td>
<td>$3,017,910</td>
<td>34.42%</td>
</tr>
<tr>
<td>14 Foreign Language lab</td>
<td>4,500</td>
<td>1975</td>
<td>$628,586</td>
<td>$1,462,181</td>
<td>42.99%</td>
</tr>
<tr>
<td>15 Assoc. Students/Lounge/Deli</td>
<td>6,300</td>
<td>1975</td>
<td>$931,381</td>
<td>$2,047,054</td>
<td>45.50%</td>
</tr>
<tr>
<td>16 Dig. Village Bus. Cluster</td>
<td>8,610</td>
<td>1975</td>
<td>$1,155,062</td>
<td>$2,887,134</td>
<td>40.01%</td>
</tr>
<tr>
<td>17 Library</td>
<td>14,280</td>
<td>1977</td>
<td>$1,324,235</td>
<td>$4,201,563</td>
<td>31.52%</td>
</tr>
<tr>
<td>4 Ohlone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Compr/Court Rept Labs</td>
<td>4,187</td>
<td>1975</td>
<td>$699,875</td>
<td>$1,360,479</td>
<td>51.44%</td>
</tr>
<tr>
<td>19 Ofc Occup/Court Rept/Comp</td>
<td>16,356</td>
<td>1975</td>
<td>$1,950,909</td>
<td>$5,484,548</td>
<td>35.57%</td>
</tr>
<tr>
<td>20 Food Vend/PE/Class Rooms</td>
<td>6,676</td>
<td>1975</td>
<td>$1,017,690</td>
<td>$2,169,227</td>
<td>46.91%</td>
</tr>
<tr>
<td>21 Pool/Shower/Locker Room</td>
<td>9,506</td>
<td>1977</td>
<td>$1,179,536</td>
<td>$3,543,944</td>
<td>33.28%</td>
</tr>
<tr>
<td>22 Campus Police/Corp Yard</td>
<td>4,273</td>
<td>1975</td>
<td>$271,212</td>
<td>$1,435,878</td>
<td>18.89%</td>
</tr>
</tbody>
</table>
Kentfield Campus Facility FCI by Type Structure

The following is a list of the campus facilities grouped by building number that displays the current Repair Cost, Replacement Cost and FCI.

<table>
<thead>
<tr>
<th>Facility</th>
<th>Gross SF</th>
<th>Year Built</th>
<th>Repair Cost</th>
<th>Replacement Cost</th>
<th>FCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kentfield Campus</td>
<td>357,599</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science Center</td>
<td>50,837</td>
<td>1969</td>
<td>$6,237,105</td>
<td>$123,833,520</td>
<td>36.40%</td>
</tr>
<tr>
<td>Admin. Center/Childrens Center</td>
<td>3,595</td>
<td>1940</td>
<td>$1,304,430</td>
<td>$1,252,195</td>
<td>104.17%</td>
</tr>
<tr>
<td>Bolinas Marine Lab</td>
<td>845</td>
<td>1964</td>
<td>$180,631</td>
<td>$250,454</td>
<td>72.12%</td>
</tr>
<tr>
<td>Bolinas Marine Station</td>
<td>3,333</td>
<td>1964</td>
<td>$485,988</td>
<td>$1,120,611</td>
<td>43.37%</td>
</tr>
<tr>
<td>Business and Management Center</td>
<td>5,429</td>
<td>1956</td>
<td>$788,972</td>
<td>$1,805,644</td>
<td>43.69%</td>
</tr>
<tr>
<td>Dance Center/Landscape Center</td>
<td>9,604</td>
<td>1954</td>
<td>$1,427,940</td>
<td>$3,808,264</td>
<td>37.50%</td>
</tr>
<tr>
<td>Diamond P.E. Center/Gymnasium</td>
<td>36,392</td>
<td>1965</td>
<td>$4,690,560</td>
<td>$12,890,938</td>
<td>36.39%</td>
</tr>
<tr>
<td>Dickson Hall</td>
<td>11,870</td>
<td>1935</td>
<td>$866,878</td>
<td>$3,947,871</td>
<td>21.96%</td>
</tr>
<tr>
<td>Disabled Students Center</td>
<td>1,661</td>
<td>1973</td>
<td>$87,241</td>
<td>$588,312</td>
<td>14.83%</td>
</tr>
<tr>
<td>FCLRC/Lib./Bookstore/ESL/CIS</td>
<td>65,575</td>
<td>1971</td>
<td>$6,458,868</td>
<td>$23,175,090</td>
<td>27.87%</td>
</tr>
<tr>
<td>Fine Art/Art Gallery/Box Offic</td>
<td>79,636</td>
<td>1950</td>
<td>$13,358,745</td>
<td>$28,206,386</td>
<td>47.36%</td>
</tr>
<tr>
<td>Fusselman Hall</td>
<td>14,717</td>
<td>1939</td>
<td>$87,241</td>
<td>$5,212,635</td>
<td>43.85%</td>
</tr>
<tr>
<td>Harlan Center</td>
<td>25,651</td>
<td>1969</td>
<td>$1,563,038</td>
<td>$8,521,562</td>
<td>18.34%</td>
</tr>
<tr>
<td>Olney Hall</td>
<td>12,227</td>
<td>1956</td>
<td>$1,357,843</td>
<td>$4,066,606</td>
<td>33.39%</td>
</tr>
<tr>
<td>Stdt.Serv.Cen./Cafe/Emeritus</td>
<td>36,227</td>
<td>1966</td>
<td>$3,979,059</td>
<td>$13,138,283</td>
<td>30.29%</td>
</tr>
</tbody>
</table>

It is accepted practice within the field of professional property management to consider replacement rather than repair of an asset when the FCI for that facility is in the range of 60 – 70% or higher. For facilities with an FCI in or near this range, the master planning process should carefully weigh issues such as:

- Student population (current versus planned) of the school in question
- The generally good condition of the existing foundations and superstructures
- The need for additional space, i.e., new construction
- The appropriateness of the location of current assets

This report provides cost estimates to renovate the facilities and eliminate the identified deficiencies. Please note that these estimates reflect current building standards, codes and livability issues into the renovation. The cost estimates do not reflect upgrades to:

- the architectural program—e.g., additional square footage for another educational mission
- finishes—e.g., terrazzo tile in lieu of concrete
- systems—replacement of a 200 Amp electrical service with a 300 Amp service, which may in fact be more applicable for today’s
educational mission/program but would require further engineering and study to determine the appropriate service for today’s learning environment.
Funding Requirements – 10 Year Renewal Projection

The following chart illustrates the 10 year total funding requirements for the three COM funding scenarios. It shows the combined funding needed for correcting the assessed deficiencies and the predicted capital renewal requirements. Using this chart, we can query:

- “How much funding is required to maintain the current FCI?”
- “What level of funding is required to achieve an FCI of 10%?”
- “What level of funding is required to achieve an FCI of 5%?”

Future Facility Funding vs FCI for Indian Valley Campus
Indian Valley Campus

- **Current FCI: Keep the current FCI Stable (Red)**
The red line shows capital renewal costs over the next 10 years that would be required to maintain the current FCI. The total to keep the FCI stable is approximately $13.4 million.

- **Required funding: Reduce the FCI to 25% (Blue)**
The blue line assumes a consistent level of funds for the next 10 years to buy-down the current deficiencies and additional funding for capital renewal items to achieve an FCI of 25%. The total to reduce the FCI to 25% is approximately $21 million.

- **Required funding: Reduce the FCI to 12% (Green)**
The green line assumes a consistent level of funds for the next 10 years to buy-down the current deficiencies and additional funding for capital renewal items to achieve an FCI of 12%. The total to reduce the FCI to 12% is approximately $28 million.
Kentfield Campus

- **Current FCI: Keep the current FCI Stable (Red)**
 The red line shows capital renewal costs over the next 10 years that would be required to maintain the current FCI. The total to keep the FCI stable is approximately **$28 million**.

- **Required funding: Reduce the FCI to 24% (Blue)**
 The green line assumes a consistent level of funds for the next 10 years to buy-down the current deficiencies and additional funding for capital renewal items to achieve an FCI of 24%. The total to reduce the FCI to 24% is approximately **$46.3 million**.

- **Required funding: Reduce the FCI to 12% (Green)**
 The green line assumes a consistent level of funds for the next 10 years to buy-down the current deficiencies and additional funding for capital renewal items to achieve an FCI of 12%. The total to reduce the FCI to 12% is approximately **$64 million**.

Facility Renewal Forecast for Marin CCD, Indian Valley Campus, Kentfield Campus
20 Year Capital Renewal Forecast
The cost models for each building give us a method to predict future needs for capital renewal. Each model allows us to assess the remaining life of each of the main systems in the building and to enter the expected time of replacement of such systems. Although each model is only a rough approximation for one building, over a larger sample size, these cost models produce a reliable estimate of the yearly cost to replace building systems. This chart illustrates a 20-year projection of capital renewal funding requirements, excluding current deficiencies for the entire district.

The overall FCI of the facilities at the Kentfield Campus is 36.4 % and at Indian Valley Campus is 37.42 %; this is considerably worse than what we find for facilities of similar age and function across the nation.

The majority of the deferred maintenance requirements can be renewed without demolition of the facility (e.g., mechanical and electrical systems, wall and floor finishes, and exterior doors and windows). Not all facilities should be renovated, but renovation should remain an option as the planners consider educational master plans, new buildings, high growth areas, population, etc….

Conclusions
Facilities Assessment Methodology

The basic surveys to be performed within the CCC System are referred to as “Level 1” or “Level 2” assessments. A Level 1 assessment is a mathematical model of a facility’s component building systems, which is used to determine their conditions based on the components’ planned life cycles. It is a strategic tool for programming and budgeting capital renewal costs; a macro view of facility status. A Level 2 assessment is a detailed physical survey of the condition of existing facilities wherein the assessors document hundreds or thousands of current deficiencies. These deficiencies are added to the Level 1 component building system life cycles to determine a comprehensive facility evaluation of both current deficiencies and future renewal costs. It is a tool for facility managers to identify specific deferred maintenance and capital renewal items to repair or replace.

The majority of the facility condition assessment being performed by 3D/I, for Districts within the California Community College System, are Level 2 assessments. For this type of assessment, data is collected from a review of as-built drawings and other current documents as well as a complete but non-destructive visual inspection of facilities. Typical areas of buildings that are investigated include roofs, mechanical rooms and exterior support areas extending to five feet from the building.

The first phase of a Level 2 assessment is the review of the floor plans of each facility to be assessed. Next a hierarchical structure (a “tree” or “parent/child” relationship) that captures the facilities and all interior rooms and spaces is designed in the COMET software. The tree structure provides the assessor a road map of the building and the lowest level of the tree structure is where the deficiencies are recorded. The next step is developing cost models for the life cycles of building systems. This includes reviewing existing documents to determine types, ages, and components of the buildings and the dates and scope of any recent renovations.

3D/I’s cost models are based on RS Means building material estimates and the Business Owners and Managers Association (BOMA) estimated useful life of building components. However, COMET can be customized to reflect individual clients’ project or O&M cost histories and to account for particular environmental or operational conditions—such as excessive moisture and efforts, since they can often significantly affect the number of years a system can remain in operation.
Priorities
Each deficiency is assigned a “Priority” as described below.

- **Priority 1: Directly Affects the Educational Mission** – Systems or elements within systems that should be repaired or replaced to mitigate issues that prevent the educational mission of the facility.

- **Priority 2: Indirectly Affects the Educational Mission** - Systems or elements within systems that should be replaced or repaired to maintain the educational mission of the facility or mitigate additional damage to the facility.

- **Priority 3: Beyond Expected Useful Life** – Systems or elements within systems that should be replaced or repaired to maintain the mission of the facility but potentially have some life left.

- **Priority 4: Finishes and Improvements** – Systems or elements within systems that should be replaced or repaired or upgraded that have minimal impact on the educational mission of the facility.

Categories
Each deficiency is classified into one of the following categories.

- Life Safety Code Compliance
- Building Code Compliance
- Accessibility Code Compliance
- Capital Renewal
- Deferred Maintenance
- Energy Efficiency Improvement
- Hazmat

Adverse Effects
Each deficiency is assigned one of the following risk potentials.

- Campus / Facility Closure
- Safety Hazard
- Disruption of Program
- Code Violation
- Greater Future Damage / Cost
- Inconvenience
- Potential / Future Damage / Cost
City Cost Index (CCI)
The R.S. Means data used to develop the cost models and price the deficiencies is based on a national average. In order to reflect pricing indicative of this area of the country, a City Cost Index (CCI) is applied to all pricing and cost models.

Facility Condition Index (FCI)
The FCI represents the relative physical condition of facilities. The FCI measures the estimated cost of the recommended improvements compared to the replacement cost of the facility. The total cost of repairs divided by the facility replacement cost is the FCI. A higher FCI indicates a poorer facility condition. For example, if a building has a replacement value of $1,000,000 and has $100,000 of existing deficiencies, the FCI is $100,000/$1,000,000 or 0.10. The generally accept rule of thumb in building condition assessments is:

<table>
<thead>
<tr>
<th>Condition</th>
<th>FCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>0 to 5%</td>
</tr>
<tr>
<td>Fair</td>
<td>6 to 10%</td>
</tr>
<tr>
<td>Poor</td>
<td>10% and above</td>
</tr>
</tbody>
</table>

Facility Systems
- Conveying: Elevators
- Electrical: lighting and power, service and distribution
- Exterior Closure: exterior doors, exterior walls, windows and glazed walls, roofing
- Interior Construction: ceiling finishes, floor finishes, interior doors, wall finishes, walls
- Mechanical: boiler, cooling; heating, ventilating and air-conditioning (HVAC) pipe, insulation and ducts, air handling units
- Plumbing: fire sprinkler systems, plumbing fixtures, plumbing pipe
- Structural: superstructure (columns, beams, footings, foundations, slab-on-grade, etc…)
- Roof includes all components of a roofing system including the deck, insulation, membrane and any special work such as gutters or repairing flashing, etc…
- Slab on Grade includes any repairs, removal or replacement after other work is done
- Special Construction includes chalk and tack boards, seating, etc…
- Structural includes framing system, columns, beams and slabs
- Superstructure includes the exterior walls
- Windows includes repair or replacement of window units
- Structural: superstructure (columns, beams, footings, foundations, slab-on-grade, etc…)

Definitions
Facility Replacement Cost
This represents the derived expense to rebuild the existing facilities in a manner representing the desired construction. The replacement cost is determined by multiplying the gross area of the facility by the estimated cost per square foot associated with the pertinent cost model.

Renewal Premiums
The costs developed in the models are typical of new construction. When a renovation project is undertaken certain additional costs are incurred for some systems because of demolition and difficulty. For other systems not all items in the assembly are replaced. In these instances the reduction in work overcompensates for the demolition costs and a lower cost is incurred. The table below details our strategy for this issue by system group.

<table>
<thead>
<tr>
<th>System Name</th>
<th>Life (YRS)</th>
<th>% Renewal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceiling Finishes</td>
<td>13</td>
<td>115</td>
</tr>
<tr>
<td>Cooling Equipment</td>
<td>25</td>
<td>90</td>
</tr>
<tr>
<td>Doors</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>Fire Protection</td>
<td>25</td>
<td>90</td>
</tr>
<tr>
<td>Heating</td>
<td>30</td>
<td>90</td>
</tr>
<tr>
<td>Insulation</td>
<td>20</td>
<td>110</td>
</tr>
<tr>
<td>Interior Doors</td>
<td>25</td>
<td>105</td>
</tr>
<tr>
<td>Interior/Exterior Walls</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Floor Finishes</td>
<td>10</td>
<td>115</td>
</tr>
<tr>
<td>Footings & Foundations</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Lighting & Power</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>Parking, Landscape & Drainage</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>Partitions</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>Piping & Fixtures</td>
<td>30</td>
<td>90</td>
</tr>
<tr>
<td>Roof</td>
<td>20</td>
<td>110</td>
</tr>
<tr>
<td>Service & Distribution</td>
<td>30</td>
<td>90</td>
</tr>
<tr>
<td>Special Construction</td>
<td>25</td>
<td>115</td>
</tr>
<tr>
<td>Superstructure</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Wall Finishes</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Windows & Doors</td>
<td>30</td>
<td>105</td>
</tr>
</tbody>
</table>
Raw and Additional Costs

Raw costs include the contractor’s installation cost (RS Means data), site work, the contractor’s general conditions, the general contractor’s overhead and profit and an amount for construction contingency. Additional costs are costs which are necessary to accomplish the work but are not directly attributable to the general contractor or the deficient system. Additional costs vary by user but can include design fees: specialized investigations such as geo-technical, environmental or hazardous material; program management fees; and various administrative fees. The additional costs used in this assessment are as follows:

New Construction Cost Breakdown for Cost Models

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Cost</td>
<td></td>
</tr>
<tr>
<td>1. Total Subcontractor/Specialty Costs</td>
<td>R.S. Means Assembly price</td>
</tr>
<tr>
<td>2. Site Work</td>
<td>12.0% of 1</td>
</tr>
<tr>
<td>3. General Conditions</td>
<td>15.0% of (1+2)</td>
</tr>
<tr>
<td>4. Contractor Overhead and Profit</td>
<td>10.0% of (1+2+3)</td>
</tr>
<tr>
<td>5. Construction Contingency</td>
<td>5% of (1+2+3+4)</td>
</tr>
<tr>
<td>6. General Contract</td>
<td>1+2+3+4+5</td>
</tr>
<tr>
<td>Additional Cost</td>
<td></td>
</tr>
<tr>
<td>7. Architecture and Engineering</td>
<td>15.0% of General Contract</td>
</tr>
<tr>
<td>8. Plan Check/Permits/Fees</td>
<td>2.0% of General Contract</td>
</tr>
<tr>
<td>9. Hazardous Materials</td>
<td>0.5% of General Contract</td>
</tr>
<tr>
<td>10. Materials Testing and Inspection</td>
<td>2.0% of General Contract</td>
</tr>
<tr>
<td>11. Bonds and Insurance</td>
<td>2.0% of General Contract</td>
</tr>
<tr>
<td>12. Temporary Storage and Relocation</td>
<td>1.0% of General Contract</td>
</tr>
<tr>
<td>13. Furniture and Equipment</td>
<td>7.0% of General Contract</td>
</tr>
<tr>
<td>14. Construction Management</td>
<td>5.0% of General Contract</td>
</tr>
</tbody>
</table>
Renovation Cost Breakdown for deficiencies pricing

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Cost</td>
<td></td>
</tr>
<tr>
<td>1. Total Subcontractor/Specialty Costs</td>
<td>R.S. Means per unit price</td>
</tr>
<tr>
<td>2. Site Work</td>
<td>0% of 1</td>
</tr>
<tr>
<td>3. General Conditions</td>
<td>15.0% of (1+2)</td>
</tr>
<tr>
<td>4. Contractor Overhead and Profit</td>
<td>10.0% of (1+2+3)</td>
</tr>
<tr>
<td>5. Construction Contingency</td>
<td>15% of (1+2+3+4)</td>
</tr>
<tr>
<td>6. General Contract</td>
<td>1+2+3+4+5</td>
</tr>
<tr>
<td>Additional Cost</td>
<td></td>
</tr>
<tr>
<td>7. Architecture and Engineering</td>
<td>15.0% of General Contract</td>
</tr>
<tr>
<td>8. Plan Check/Permits/Fees</td>
<td>2.0% of General Contract</td>
</tr>
<tr>
<td>9. Hazardous Materials</td>
<td>3.0% of General Contract</td>
</tr>
<tr>
<td>10. Materials Testing and Inspection</td>
<td>2.0% of General Contract</td>
</tr>
<tr>
<td>11. Bonds and Insurance</td>
<td>2.0% of General Contract</td>
</tr>
<tr>
<td>12. Temporary Storage and Relocation</td>
<td>1.0% of General Contract</td>
</tr>
<tr>
<td>13. Furniture and Equipment</td>
<td>7.0% of General Contract</td>
</tr>
<tr>
<td>14. Construction Management</td>
<td>5.0% of General Contract</td>
</tr>
</tbody>
</table>

It is important to note that these costs may vary once plans for executing the work are created. If variations do occur over time, the data in COMET can be easily updated to reflect the changing costs.
Appendix B: List of Interviews

05-07-03(W)
- PAMELA MIZE, Dean of Enrollment Services
- DAVID COOK, Director of Financial and Career Aid
- MARIE McCARTHY, Counselor, Disabled Students Program (DSP)

05-08-03(Th)
- RONALD GAIZ, Chair of Communications
- BLAZE WOODLIEF, Director of English as a Second Language (ESL)
- HENRY FEARNLEY, Chair of Social Sciences
- EDWARD KISSICK, Chair of Business and Information Systems
- PAUL CHRISTENSEN, Chair of Behavioral Sciences
- ROSALIND HARTMAN, Director of Health Sciences

05-09-03(F)
- BECKY REETZ, Coordinator of Tutoring Center
- DOUGLAS DELANEY, Music
- ANTHONY MONTLIEF, Chair of Math
- CAROL ADAIR, Chair of Communications
- BILL ABRIGHT (1st), Coordinator of Ceramics Program, Art
- CARLA SMITH-ZILBER, Coordinator of Drama Program
- DAVID WHITE, Designer/Stage Technician, Drama

05-12-03(M)
- KRISTI KUHN, Coordinator of Dance Program
- EMILY LAZAREE, Three Dimensional Focus, Art
- WALTER TURNER, Ethnic Studies, History
- TARA FLANDREAU, Music
- LEAH SHELLEDA, Philosophy, Humanities
- DAVID ROLLISON, Chair of English and Humanities
- BERND ENDERS and
- ERIK DUNMIRE, Co-chairs, Physical Sciences
• BONNIE BORENSTEIN, Dean of Humanities and Instructional Technology, Dean of Library Services

05-13-03(T)
• DON FLOWERS, Maintenance Supervisor
• KATHY WAGNER, Art
• STAN KRASCEK, Chair of Performing Arts
• BILL ABRIGHT (2nd), Coordinator of Ceramics Program, Art
• ALLEN TAYLOR, Drama
• CHESTER ARNOLD, Chair of Fine and Visual Arts

05-14-03(W)
• JIM BROVELLI, Director of Physical Education and Athletics
• KATHY FRESCHI, Chair of Foreign Languages
• STUDENT GATHERING arranged by Michael Beebe’s office and conducted by KMD
 o JAMES GERAGHTY
 o REBECCA CHRISMAN
 o CHRIS HULLS
 o 3 STUDENTS whose names were not recorded

05-15-03(Th)
• JUDITH MARTIN, Director of Teacher and Reading Development
• JOE MUELLER, Chair of Biology

08-18-03(M)
• MARGARET ELLIOT, Executive Director, College of Marin Foundation
• JAN DARGEL, Vice President, Academic Affairs
• SUPPORT STAFF / INDIAN VALLEY
 o CARI POGAN, Director of Academic Services
 o MARY GALE BEYER, Computer Lab Technologist
 o THOMAS HOLUB, Instructor
 o PETE LOEFFLER, Auto Lab Technologist
 o LAURIE LOEFFLER, Career Education and Workforce Development
 o KATHY JOINER, Business Services
 o PAULETTE FOSTER, Office Specialist, A/R
 o MARTY SUKOSK, Teacher and Reading Development Program
 o MIKE LEWIS, Computer Program Counselor
 o DORIS TUCKER, Payroll Technician
• DON SCHOLTER, IT System Support Administrator
• RAINER M. WACHOLOVSKY, IT Support
• BEN CAMABYAB, Fiscal

• BOB THOMPSON, Director of Maintenance and Operations

08-19-03(T)

• PHYLLIS METCALF, Trustee
• MANAGEMENT COUNCIL / KENTFIELD
 o PAULA KUTNASKY-BROWN
 o ROZ HARTMAN
 o JUDITH MARTIN
 o BLAZE WOODLIEF
 o LORAINE WILSON
 o CARI POGUE
 o CHRIS SCHULTZ
 o DAVID COOK
 o JOY SNYDER
 o JIM BROCELLI
 o MICHAEL BEEBE
 o LINDA DALTON
 o CHARLES LACEY
 o BONNIE BOORENSTEIN
 o SANDY ROBERTS
 o LING SING
 o RAINER WACHOLOVSKY
 o THEO MABRY

08-20-03(W)

• FRANK PARNELL, Trustee, President of Board of Trustees
• GREG BROCKBANK, Trustee
• EVA LONG, Trustee
• BARBARA DOLAN, Trustee

08-21-03(Th)

• DON FLOWERS, Maintenance Supervisor
• WANDEEN TRAYNOR, Trustee

09-23-03(T)

• COLLEGE OF MARIN FOUNDATION, Board of Directors
• LOIS CALLAHAN, Interim President
09-24-03 (W)

- **FACULTY AND SUPPORT STAFF / INDIAN VALLEY**
 - RON PALMER
 - ARTHUR LUTZ, Metal Machine Technology
 - GEORGE HRITZ, Program Coordinator, Auto Technology
 - SHERRI ROLLISON, Instructor, Dance Department
 - LEITA HLAVACHEK, Counseling Department
 - LINDA NYLAND, Children’s Center
 - MARTI SAKOSKI, Teacher Education
 - MIKE LEWIS, COMGO Computer Center
 - CECIL BANKS, Financial Aid Office
 - JAMES GONZALEZ, Multimedia Department

09-25-03 (Th)

- **FACULTY AND SUPPORT STAFF / KENTFIELD**
 - PAULA KUTANSKY-BROWN, Physics and Astronomy Department
 - JUNE LEE, Nurse, Health Clinic
 - JODI FITZGERALD, Curriculum Office
 - SUSAN SCOTT, Counseling Department
 - ROBERT E. MILL, Counseling Department
 - ALICE PEVYHOUSE, Physics and Astronomy
 - BERND ENDERS, Co-Chair, Physics and Astronomy

- **FRIENDS OF CORTE MADERA CREEK WATERSHED**
 - TOM GOLDMAN
 - CAROLE D’ALESSIO
Appendix C: Report of Civil Engineers

The firm of Sandis Humber Jones (SHJ) Civil Engineers reviewed existing utilities, drainage and flood-plains to ascertain capacity deficiencies and known operational problems that might affect future development of the College and to recommend actions to be included in projects proposed for a bond program.
Sitework and Utilities Infrastructure Assessment

Overview

The goal of this Facility Needs Assessment (FNA) is to aid 3D/International (3D/I) in developing a catalog of facility projects at the College of Marin campuses for inclusion in a bond referendum for the 2004 election in Marin County.

Summarizing from coordination with 3D/I, this FNA will:

1. Develop a “wish list” of site and infrastructure improvements.
2. Ascertain what work is required to sustain, renew, or replace existing site improvements and utilities.
3. Determine a “most wanted/most needed” list for sitework and utility improvements.

The Final Facility Needs Assessment (FNA) will:

1. Examine the draft master plan to confirm needs.
2. Prioritize projects.
3. Prepare a final project list.

The FNA was compiled using data from site walks, discussions with Campus Facilities, direction from 3D/I, research of existing campus utilities systems, research of existing utilities systems surrounding the Campuses, and our experience with college campus utilities needs and infrastructure improvements.

Summary

The majority of the Kentfield and Indian Valley campuses were constructed in the 1950’s-1960’s and the 1970’s, respectively. Because of the age of the campuses, constant maintenance issues, changing technologies, and new building codes, most of the utilities systems need improvement to minimize campus maintenance efforts and facilitate future development.

The campus utilities are mostly undocumented. Discussions with the District Facilities Department focused on known maintenance issues. Over the years, the Facilities Department have begun collecting data about the existing utilities in the campuses, but cannot provide data for the location nor size of existing utilities for future development. Record drawings were not available for examination.
Existing utilities can be mapped by utility locating services. Utilities should be compiled into a base topographic survey, drafted to scale, for use by the design teams providing services to the District. Although only actual excavation will reveal the depths, sizes, materials, and location of underground utilities, a topographic survey will aid the District in developing more quantitative infrastructure improvements needed for the campuses.

The following items reflect not only current infrastructure needs, but projected future maintenance issues as well as work for future campus development. The maintenance issues and concerns compiled by SHJ and the Facilities Department for both campuses include, but are not limited to:

- A deficiency in isolation valves for the water system
- Aging electrical transformers, switchgears, and cabling
- Crushed irrigation piping
- Unmapped fire water sprinkler system connections
- Gas piping leaks
- Overhead electrical cabling
- Sanitary Sewer back-ups
- Transite piping
- Water infiltration into Electrical conduits and buildings.

Additionally, at each campus, maintenance issues included:

- An aging Condensate Loop at Indian Valley
- Erosion at Indian Valley
- Flooding at Kentfield
- Groundwater infiltration into building basements at Kentfield

Recommendations

Based on SHJ’s evaluation of the available data, the following is a list of the most needed/most wanted and recommended work for the Colleges:

1. Add erosion control measures at the Indian Valley Campus.
2. Replace the gas main at Indian Valley.
3. Perform a Boundary and Topographic Survey.
4. Replace the Condensate Loop at Power Plant 1 serving the Library and Ohlone Cluster on the Indian Valley campus.
5. Video inspect the interior of sanitary sewer and storm drain utilities to determine what rehabilitation measures are necessary.
6. Inspect all 12 KV electrical equipment, trenches, transformers, switchgears, cabling, and conduit.
7. Flow test the existing fire water systems.
8. Map campus-wide underground and overhead utilities.
9. Pothole existing Gas and Water lines for location, size, depth, pipe material, and pipe condition.
10. Rehabilitate campus parking lots.

These recommendations include work to repair existing systems as well as determine what future work is necessary to aid the District in determining what work is needed for the continued development of the Marin Community College District’s Kentfield and Indian Valley campuses.

Marin Community College District - Existing Utilities Summary

Kentfield Campus

Site Description

Location

The Kentfield Campus of the College of Marin encompasses approximately 60 acres in Kentfield, Marin County, California. The campus is located to the west of Highway 101.

The majority of the campus buildings are located north of Corte Madera Creek. This section of the campus is bounded by Laural Avenue, College Ave, and Sir Francis Drake Boulevard.

The Science Center and the Maintenance Shops are located south of the Creek. This section is bounded by College Avenue, Stadium Way, and Kent Avenue.

The Athletic Complex is located south of the Creek on the east side of College Avenue.

Topography

The campus is located in a valley east of Ross Hill. Corte Madera Creek flows easterly through the campus, and exits southeasterly into Corte Madera Channel where it eventually outfalls to San Francisco Bay.

Flood Plain

The campus is located in both Zone A and Zone C, as depicted in Panel 060173-0433-A of the Federal Emergency Management Agency, Flood Insurance Rate Map (FEMA FIRM) dated March 1, 1982.
Zone A is an area of 100-year flood. Base flood elevations and flood hazard factors were not determined by FEMA. Zone A affects most of the campus buildings and structures south of the Corte Madera Creek. Base flood elevations should be determined for any development in this area.

Zone C is an area of minimal flooding. Base flood elevations and flood hazard factors were not determined by FEMA. Zone C affects the area of campus north of Corte Madera Creek. Three areas of Zone C are scattered within Zone A.
Parking

The Kentfield campus has surface parking lots adjacent to Sir Francis Drake Boulevard, College Avenue, and Kent Avenue.

Existing Utilities

Water

Fire and domestic water is supplied by North Marin Water District. The campus has a combined fire and water system conveyed by transite pipes. The water system at the northern part of the campus ties into the NMWD main at two locations. One connection is located in the parking lot adjacent to Sir Francis Drake Boulevard. The second connection is in of Laurel Avenue near the Fine Arts Building.

There are approximately 11 fire hydrants evenly distributed throughout the campus. The North Marin Water District maintains five service meters and one fire line meter. The location of the service meters, pipe sizes, and pressure are presented in the table below.

<table>
<thead>
<tr>
<th>Service Meter Location</th>
<th>Pipe Size and Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjacent to Sir Francis Drake, across from Elm Ave.</td>
<td>2” CIP @ 125 psi</td>
</tr>
<tr>
<td>Adjacent to Sir Francis Drake, across from Maple Ave.</td>
<td>6” CIP @ 120 psi</td>
</tr>
<tr>
<td>Adjacent to Laurel Ave., next to Parking Lot #4.</td>
<td>6” CIP @ 120 psi</td>
</tr>
<tr>
<td>Adjacent to Kent Ave., in front of the Science Building.</td>
<td>8” CIP @ 130 psi</td>
</tr>
<tr>
<td>In the vicinity of Parking Lot #9.</td>
<td>2” CIP @ 125 psi</td>
</tr>
</tbody>
</table>
Sanitary Sewer

The City maintains a public sewer system in the streets surrounding the campus. There is a 36-inch sewer main servicing the campus north of Corte Madera Creek, and a 30-inch main servicing the campus south of the Creek.

The laterals servicing the buildings on College Avenue connect to an 8-inch Asbestos Concrete Pipe (ACP). The 8-inch ACP connects into a 36-inch City main that runs parallel to the Corte Madera Creek.

The laterals servicing a majority of the campus structures north of the Corte Madera Creek connect to a 10-inch pipe that runs to the 36-inch City main.

The laterals servicing the buildings and complex on College Avenue, south of the Creek, connect to a 12-inch ACP and continues north. The 12-inch ACP connects to a 30-inch City main near the underground culvert north of the PE Complex and continues west.

Sewage from the 30-inch City main crosses below the Creek via a double siphon device. The 30-inch main is connected to the 36-inch main and continues to run south toward the City Pump Station.

The sewer system for the Kentfield campus is approximately 40 to 50 years old. Some minor root intrusion was noted in the laterals servicing several of the Campus buildings.

Storm Drainage

The concrete-lined portion of Corte Madera Creek was installed by the Army Corps of Engineers for the Marin County Flood Control District, and it was designed for a 100-year storm event. However, three floods have occurred in the last 20 years. Past floods, as deep as four feet, were reported in the southern part of the campus.

The Corte Madera Creek is maintained by the Marin County Flood Control and Water Conservation District. There are also two 11-feet wide culverts located beneath the Physical Education Complex which outfall to the Corte Madera Channel.

Although the southern portion of campus is prone to flooding conditions, the campus storm drain system is equipped with check valves (flappers) to prevent storm water back up through the underground piping network.
Natural Gas

PG&E supplies natural gas service to the Campus. The gas main connection is located in Laural Avenue adjacent to the Fine Arts Building. No documentation was available for the size, type, and location of the campus gas piping. The northern part of the campus receives gas through the master gas meter located adjacent to the Fine Arts Building. The gas pressure is approximately 5 psi. Separate gas services are used to supply the Science Building and the Physical Education Complex.

Power

PG&E supplies electricity to the campus. The electric meter for the northern part of the campus is located adjacent to the Fine Arts Building. After the meter, the Campus owns and maintains the transformers and switches. There are seven major power shut-off locations scattered throughout the campus. Although the existing electrical service is 12-KV; the cable is rated for 15-KV. The campus was reported to have sufficient power for future development.

Indian Valley Campus

Site Description

Location

From the 1980 Indian Valley Colleges – A Master Plan document, the Indian Valley Campus occupies 333 acres of land in Novato, Marin County, California. Of the 333 acres of land, 69 acres were located on a grade of 10 percent or less in slope and sited for development. The campus encompasses approximately 60 acres of the site.

Topography

The campus is surrounded by the Indian Valley Open Space Preserve, near the San Jose (Pacheco) mountain ridges, to the northeast of the Big Rock Ridge. It is located in the outskirts of the City of Novato, at the end of Ignacio Valley Boulevard. Surrounded by hills, the site itself is in a valley, but is at a higher elevation than the City.

Novato Creek originates from the southwest of the campus, traverses the campus in an easterly direction, then continues to the southeast through the City of Novato, and eventually to the San Francisco Bay.
Flood Plain

The campus is located in Zone X, as depicted in Panel 060178-0004-C of the Federal Emergency Management Agency, Flood Insurance Rate Map (FEMA FIRM) dated September 29, 1989. The Zone is described as an area outside of the 500-year flood plain.

Student Population

The campus was master-planned for a student population of 5000 per the 1980 Master Plan document.

Parking

The campus has one major public point-of-entry at Ignacio Valley Boulevard, located on the southeast corner of the campus. There is also an existing non-public, narrow dirt road on the west side of the site that ties the campus to Indian Valley Road. From the 1980 Master Plan document, two alternate routes to tie Ignacio Valley Boulevard to Indian Valley Road were approved for future consideration. The connecting routes were located on the northern side of the site, but were not constructed.

The campus currently has approximately 900 parking stalls, with 13 spaces designated as accessible. The parking lots are located on the north side of Novato Creek. There are 8 vehicular or pedestrian bridges providing access from the parking lots to the campus located on the south side of Novato Creek.

Existing Utilities

Water

The North Marin Water District owns and maintains the water main that follows the campus road. The water main is 16-inches in diameter along Ignacio Boulevard, and 12-inches along the campus loop road, with a water pressure of approximately 60psi. Much of the water main in the interior of the main campus is also owned by the NMWD. All fire hydrants and water meters tapped directly to the NMWD main are part of the NMWD system. There are existing backflow prevention devices and stubs for future connections on the NMWD main.

Regarding fire protection, the Fire Department has access to the main campus from several of the bridges from the parking lots across Novato Creek. They have expressed concerns about the integrity of the existing bridges. The bridges were constructed with a pile foundation and a wooden deck that was later rehabilitated to a concrete deck.
The outer roadway and fire hydrant loop are primarily for brush fire protection and protection of the outer perimeters of the buildings. The secondary water loop traversing the campus interior provides protection for the buildings facing the campus center. Because the Library is inaccessible to large vehicles, a dry standpipe system for fire protection was provided.

There is a graded access road along the ridge to the south of the campus that is maintained by the Marin County Fire Department to provide a first line of protection from brush fires originating from the south and west. It is intended to be accessible for four-wheel fire vehicles.

The swimming pool was provided with a fire hose connection at the perimeter road for an auxiliary 750,000 gallon water source.

Sanitary Sewer

The sanitary sewer main is a gravity system. The main runs privately west to east and increases in size from 4-inches in diameter at the Corporation Yard to 10-inches in diameter at Ignacio Boulevard. It ties to the existing public main in Ignacio Boulevard, which is owned by the Novato Sanitary District.

The sewer main crossing at Novato Creek was recently exposed due to erosion and replaced. With this exception, the campus sewer system has not had any major maintenance or any capacity issues.

Storm Drainage

From the 1980 Master Plan, the existing site was plagued with erosion problems due to complex topography, over-grazing, an aging forest, little new flora, unstable vertical walls as high as 20-feet, and unnatural concentrations of run-off due to grazing patterns.

The original site development plan attempted to mitigate some of the erosion and increase safety by trimming trees severely undercut by erosion, pruning trees, installing concrete-filled sandbag check dams, adding erosion control planting, and piping storm drainage from the new campus to outfall at the least vulnerable sections of the stream beds. Special headwall structures were used at the stream bottom to dissipate the force of the water.

The stream bed has continued to erode around the Creek and the campus structures due to soft soil conditions. Gabions were constructed in two locations, but further mitigation efforts, such as additional check dams, should added.
Natural Gas

PG&E provides the natural gas service to the campus. The service is a 4-inch high pressure gas main. The gas main is located in a 10-foot wide non-exclusive easement up to the campus gas meter located at Power Plant #2. The gas pressure is reduced after the meter to 5-psi and distributed to most of the campus structures. The campus gas main is located in the loop road around campus. The campus distribution main is 6-inches in diameter at the meter, and reduces to as small as 2-inches.

Due to a gas leak, the gas connection to the Auto Body Shop was rerouted. The Shop now has a direct connection to the PG&E main and is on a separate meter.

The majority of the gas main along the southern portion of the loop road was poorly constructed. The campus maintenance staff is often repairing leaks. The gas main along the loop road should be inspected and replaced.

Power

Power Plant #1 houses the central plant equipment for the heat pump system serving the Ohloney Cluster and the Library. The mechanical equipment include two boilers, with two towers which provide both heating and air-conditioning services. It also contains an electrical transformer.

Power Plant #2 houses the central plant equipment for the heat pump system serving Pomo Cluster, Miwok Cluster, the Administration Building, and the Bookstore. The campus gas meter is also located at Power Plant #2.

Power Plant #3 houses the central electrical control and switchgear, and telephone switching equipment for the campus. The campus is powered by an existing 12 KV electrical service by Pacific Gas & Electric Company (PG&E). The remainder of the system is owned by the College. Though the power provided is 12KV, the cable is rated for 25 KV.

The campus electrical system is ducted underground with other communications systems conduits such as telephone and fire alarm. Because the ducts were sized for expansion to future Clusters, there should be sufficient spare capacity to accommodate future expansion and new systems. However, the integrity of ducts could have decayed over time, and should be reviewed.

References

Appendix D: Report of Landscape Architects

The landscape architecture firm of Royston Hanamoto Alley & Abey (RHAA) is headquartered near the Kentfield campus. The firm surveyed both campuses to assess the quality of the landscape both aesthetically and functionally. They were asked to look for opportunities to create or maintain special landscape settings, enhance the aesthetics and functionality of the campus, create “people places,” and enhance the natural and man-made character of the campuses, as well as contribute their planning expertise to design issues.
December 22, 2003

Mr. Gary Moriarty
3D/I
50 California Street, Suite 3150
San Francisco, CA 94111

Re: College of Marin Landscape Master Plan

Dear Mr. Moriarty:

The landscape for both campuses of the College of Marin should reinforce the framework and goals of the overall Master Plan concepts. RHAA has identified the issues of the current landscapes and recommendations for improvements that will support the mission of the recommended master plan improvements. These are detailed below:

INDIAN VALLEY CAMPUS:

Issues:

• Campus does not have a strong sense of arrival or entry.

• Pedestrian circulation/entries from the parking lot need to be clearer and more direct to key destinations.
• Identity of Central Quad/ mall needs to strengthened.

• Campus lacks central gathering areas both indoor and outdoor.

• Existing courtyards in the clusters are broken up into small disjointed spaces by the ramping system.

• Shrubs and groundcovers in courtyards are overgrown and past their life span.
Recommendations:

- Reinforce entry with native planting with color and texture.

- Increase directional signage in parking areas. Consider new bridges for more direct access to clusters.

- Develop central plaza/ gathering node related to new building program to create a stronger sense of campus identity.

- Redesign interior landscapes in the clusters to create small plazas where students can gather. Provide seating, shade visual interest in these spaces.
• Replant shrub plantings. Consider contract growing of native cultivars from the site to protect the genetic integrity.

Planting Design

Entry Identity Planting
Establish a campus identity for the Indian Valley Campus by infilling stands of native Oak trees along the perimeter road and groves of Oaks in highly visible entrance areas to screen parking areas. In these areas, introduce broad swaths of native shrubs and groundcovers to create interest and texture at the entry.

<table>
<thead>
<tr>
<th>Entry Area Plant List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name</td>
</tr>
<tr>
<td>Trees</td>
</tr>
<tr>
<td>Coast Live Oak</td>
</tr>
<tr>
<td>Valley Oak</td>
</tr>
<tr>
<td>Shrubs/Groundcover</td>
</tr>
<tr>
<td>Coyote Brush</td>
</tr>
<tr>
<td>Bush Lupine</td>
</tr>
<tr>
<td>Manzanita</td>
</tr>
<tr>
<td>Mock Orange</td>
</tr>
<tr>
<td>Wild Lilac</td>
</tr>
</tbody>
</table>
Main Campus- Creek Planting
Reinforce the native creek vegetation in areas where it is disturbed or degraded. This vegetation creates a natural gateway into the campus.

<table>
<thead>
<tr>
<th>Creek Plant List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name</td>
</tr>
<tr>
<td>Trees</td>
</tr>
<tr>
<td>Big Leaf Maple</td>
</tr>
<tr>
<td>Box Elder</td>
</tr>
<tr>
<td>Buckeye</td>
</tr>
<tr>
<td>White Alder</td>
</tr>
<tr>
<td>Shrubs/Groundcover</td>
</tr>
<tr>
<td>Clematis</td>
</tr>
<tr>
<td>Hazelnut</td>
</tr>
<tr>
<td>Honeysuckle</td>
</tr>
<tr>
<td>Sword Fern</td>
</tr>
<tr>
<td>California Wild Rose</td>
</tr>
</tbody>
</table>

Main Campus- Oak Groves
Retain and protect the existing Oak groves. Add additional trees as required to reinforce the 'grove' feeling. Do not allow any development within the dripline of the trees.

<table>
<thead>
<tr>
<th>Oak Grove Plant List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name</td>
</tr>
<tr>
<td>Trees</td>
</tr>
<tr>
<td>Coast Live Oak</td>
</tr>
<tr>
<td>Valley Oak</td>
</tr>
</tbody>
</table>

Main Campus- Bank Planting
Vegetate sloped areas with native shrubs and groundcovers as well as compatible non-natives to extend the California landscape theme while providing protection against erosion. Many of the existing slopes have this palette, but the plant material is past its useful life span and is woody and leggy.
Central Mall Area
Enhance existing mall area with additional shade tree planting. Maintain the existing turf in this area.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coyote Brush</td>
<td>Baccharus pilularis</td>
</tr>
<tr>
<td>Flannel Bush</td>
<td>Fremontedendron</td>
</tr>
<tr>
<td>Rockrose</td>
<td>Cistus spp.</td>
</tr>
<tr>
<td>Wild Lilac</td>
<td>Ceanothus griseus</td>
</tr>
<tr>
<td></td>
<td>horizontalis</td>
</tr>
</tbody>
</table>

Intimate Garden Courtyards
Create smaller scale courtyard gardens. Apply more detail within planting palette and provide an interpretive element with botanical labeling.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees</td>
<td></td>
</tr>
<tr>
<td>Chinese Pistache</td>
<td>Pistacia chinensis</td>
</tr>
<tr>
<td>Fraxinus raywoodii</td>
<td>Raywood Ash</td>
</tr>
<tr>
<td>Coast Live Oak</td>
<td>Quercus agrifolia</td>
</tr>
<tr>
<td>Maidenhair Tree</td>
<td>Ginkgo biloba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrubs/Groundcovers</td>
<td></td>
</tr>
<tr>
<td>Coffeeberry</td>
<td>Rhamnus californica</td>
</tr>
<tr>
<td>Strawberry Tree</td>
<td>Arbutus unedo</td>
</tr>
<tr>
<td>Western Redbud</td>
<td>Cercis occidentalis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>California Fuchsia</td>
<td>Epilobium californica</td>
</tr>
<tr>
<td>California Rose</td>
<td>Rosa californica</td>
</tr>
<tr>
<td>Fleabane</td>
<td>Erigeron spp.</td>
</tr>
<tr>
<td>Lavender</td>
<td>Lavandula spp.</td>
</tr>
<tr>
<td>Monkey Flower</td>
<td>Mimulus spp.</td>
</tr>
</tbody>
</table>
Enhanced Meadow Planting
Hydroseed open areas with a native meadow wildflower and grass seed mix appropriate to the character of the individual site.

KENTFIELD CAMPUS

Issues:
- Campus lacks identity / visibility on Sir Francis Drake Blvd with major intersection being occupied by a tacqueria.
- Tall shrubs under Redwoods along Sir Francis Drake blocks views into campus.
- Pedestrian access needs to be clearer and more gracious. Access from parking lots is poor. Visual connections to Corte Madera Creek are blocked by fencing and structures on pedestrian bridge.
- Few nodes exist where people can congregate informally.

<table>
<thead>
<tr>
<th>Plant</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sage</td>
<td>Salvia spp.</td>
</tr>
<tr>
<td>Sunrose</td>
<td>Helianthemum nummularium</td>
</tr>
<tr>
<td>Wild Lilac</td>
<td>Ceanothus spp.</td>
</tr>
<tr>
<td>Wild Buckwheat</td>
<td>Eriogonum spp.</td>
</tr>
<tr>
<td>Yarrow</td>
<td>Achillea millfolium</td>
</tr>
</tbody>
</table>
• Streetscape along College Avenue lacks continuity and interest.

• Visual connections between buildings and to Mount Tamalpais have been blocked by under story plantings.

• Shrub plantings detract from beauty of specimen trees

• Campus lacks cohesive image in its lighting and site furniture.

Recommendations:

• Create primary gateway at corner of Sir Francis Drake and College Avenue.

• To increase visibility of the campus, remove shrubs under story along Sir Francis Drake and replace with low groundcover planting.

• Create major pedestrian spine through main campus arcing from the new entry to the major crossing along College Avenue. Establish system of trees, lights paving and benches along this axis to unify the campus. Open up the bridge along this access to allow pedestrians to view the creek.
• Develop nodes/courtyards at key pathway intersections to invite informal gatherings. Create new seating area at the Learning Resources building and at the intersection of the paths at Harlan and Learning Resources.
• Add informal amphitheater at Student Services to create additional opportunities for gathering and to reinforce axis of Mount Tamalpais.

• Remove tall shrubs that block view lines across campus. Remove none specimen trees that clutter the landscape.

• Develop system of site furniture, lighting, and paving to create a unified identity

Planting

The Kentfield campus has mature well-established plantings that in many instances are some of the best examples of their species in the area. However, the under story plantings have obscured the beauty of these specimen trees. Low groundcovers should replace larger shrubs in many areas including the Redwood groves.

| Redwood Understory |
|---------------------|------------------|
| Common Name | Scientific Name |
| Wild ginger | *Asarum caudatum*|
| Polystichum munitum | *Western swordfern*|
| Vinca major | *Periwinkle* |

The western portion of the campus around the Science Center lacks any cohesive identity. The introduction of a strong spine of trees along the proposed pedestrian corridor would provide structure.

<p>	Pedestrian Spine
Common Name	Scientific Name
Trees	
Acer rubrum	Red Maple
<table>
<thead>
<tr>
<th>Carpinus betulus fastigata</th>
<th>Hornbeam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celtis sinensis</td>
<td>Hackberry</td>
</tr>
</tbody>
</table>

Conclusion

The landscape of the two campuses of College of Marin should be upgraded to reinforce the educational mission of the campuses. The campuses should be redesigned to encourage learning through improved opportunities for interaction and to improve the public image of the College of Marin.

Sincerely yours,
Royston Hanamoto Alley & Abey

\[signature\]

Cordelia L. Hill, ASLA
Appendix E: Report of Architects

Kaplan McLaughlin Diaz (KMD) was assigned the responsibility to assess both campuses for the aesthetic issues of the buildings and recommend basic design guidelines, materials and colors, etc., for new buildings and major renovations involving facade modifications. KMD also contributed to the planning concepts and determination of opportunities to create “people places” and enhance “sense of place” that is generally lacking.

The following report combines the work of KMD and RHAA as is fitting to a campus environment.
Appendix F: Preliminary Framework for Design Guidelines

Introduction

KENTFIELD CAMPUS. All of the buildings designed and constructed for the College of Marin at Kentfield through 1965 were of similar design. It is not known if there were original architectural guidelines. Study of the design of the buildings from beginning until the mid 1960’s [when the Diamond Physical Education Center was built] suggests that there was at least a self imposed restraint by the architects. There is reason to believe that the style that evolved for the first buildings was derived from the Tamalpais Center which was purchased for the College and was its first permanent structure. None of the buildings constructed after 1965 made much pretense of harmonizing with the original buildings. The icon building for the original style was the Harlan Hall which was demolished in 1961. Surviving examples of the style include Fusselman Hall and the Administrative Services Center.

TAMALPAIS CENTER, 1926

Analysis of the existing examples of the original architectural style and especially of pictures of the original Harlan Hall suggests a hybrid style that begins with the traditional Missionesque style of the times (as illustrated by the Tamalpais Center), includes images of the Stanford loggias and campanile, and adds the modern style of the times which was Art Deco. For lack of a better name, the original style has been referred to as “Art Deco
Contents

- INTRODUCTION
- INDIAN VALLEY CAMPUS
- TEXT
- LANDSCAPE TEXT
- IMAGES
- KENTFIELD CAMPUS
- TEXT
- CAMPUS
- TEXT
- CAMPUS
INTRODUCTION

The Indian Valley Campus represents in many ways the opposite standing in the community. Established in 1970’s, Indian Valley was built in anticipation for the continued population growth in Marin County that was prevalent throughout the state. Fortunately Marin County did not subject itself to the suburban sprawl that has scarred many California communities, but this also has stunted the growth and identity of the Indian Valley Campus within the community. Entrusted with approximately 200+ acres of beautiful and pristine rolling Marin hills, the Indian Valley Campus was a bold design that was themed on blending architecture with the topography, climate and landscape—and in many ways is an early attempt at an ecological design. Unfortunately two major events have affected the perception of the campus negatively. First is the low utilization of the built facilities due to the population increase that never materialized. Second is the construction problem from a badly designed detail that eventually led to a law-suit settlement and the subsequent perception that all of the structures are flawed—which is incorrect.

However, as with the Kentfield Campus, there exists a wonderful opportunity and challenge to evolve the Indian Valley Campus alongside the needs of the community, though perhaps along a more unconventional route. Given the broad and adaptable roles of Community Colleges in our society, we see an opportunity for the Indian Valley Campus to create partnerships with other entities, both public and private. Leveraging its assets in physical property and as an educational institution, Indian Valley can become a catalyst for education, business and community service through the creation of an Education Village concept. Such institutions as San Francisco State University and (Name) Charter School are examples of such partnerships that are currently being implemented that create a critical mass for a center of excellence.

The challenge of the Indian Valley Master plan will be to explore and provide a vision and identity that could engage other entities on both the public and private realm, yet remain an educational and community asset for the college and Marin County. As well, the challenge will be to evolve the existing design to fully realize its initial concept to complement its natural setting and be ecologically responsible.

KENTFIELD - EXISTING PLAN

The Kentfield Campus of College of Marin represents an established resource for the community. Started in 1926, it quickly evolved into a regionally recognized institution that provided education to the burgeoning population of Marin. Along with an established academic and community reputation, the campus also had the distinction of a cohesive and beautiful setting that was in keeping with the dramatic surroundings and landscape. Along with the legacy of the Kent Estate gardens, and a visionary campus master plan designed by Horace Cotton, the College of Marin was a classic “Spanish Revival” setting complete with graceful arcades, red-tiled roofs and a well planned setting that was tied with its landscape and focus on Mount Tamalpais.

However, in the 70’s and 80’s with the rapid demand for space and the unfortunate cut in construction and maintenance budgets, the original beauty and presence of the campus was compromised by the replacement of several key landmark buildings with stark “modernist” facilities that did not complement the exterior architecture nor the principles of the original master plan. Though functional, these buildings represent facilities that ignore the context and user comfort and are centered on architectural statements that do not reinforce the sense-of community and scale of the campus. Currently, the College of Marin is projecting minimal growth of their student population, but is in dire-need of redefining its role and standing in the community. Concurrently, the relevance of education has dramatically changed in the community due to the expectations of life-long-learning as it applies to changing technologies, mobility of communities and the pressures of learning new skills to adapt to new job opportunities. With these two opportunities, the potential and need for a visionary Master Plan for The College of Marin is a timely opportunity for the college and the community to create a partnership that will positively affect its identity and the bridging together of a community to its college.
Indian Valley Campus, Novato

Like the Kentfield Campus of the College of Marin, the master plan for the Indian Valley campus should be seen as a flexible framework for future development that can respond to inevitable changes in educational mission resulting in changes in the projected enrolment.

The 'cluster' arrangement of the Indian Valley campus provides a certain amount of inherent flexibility. The individual buildings and clusters can be used by different users each one having its own access from perimeter parking and service roads. The existing charter school, which currently utilises two out of four buildings in the Miwok cluster, is a case in point.

When the College of Marin determines the amount of space it requires to fulfil its educational mission in Novato, then it should anticipate a phased redevelopment of any of the buildings and/or clusters it retains. The existing buildings are in poor condition due largely to a lack of adequate maintenance. Reinvesting considerable sums of money in the rehabilitation of the existing structures may not make the best economic sense, particularly when comparing the quality of the teaching environments they will provide as compared to new construction.

The natural landscape setting for this campus is a great asset and should be protected and nurtured.

Any new construction should simply replace existing deficient buildings. If new construction pads are anticipated then they should be carefully sited so as not to detract from this special landscape made up of live and the nature of the climate and the natural setting one can imagine a greater connection between buildings and landscape with the provision of more 'indoor/outdoor' linked spaces.
LANDSCAPE PLAN

Issues:
- Campus does not have a strong sense of arrival.
- Pedestrian circulation/entries from the parking lot need to be clearer and more direct to key destinations.
- Identity of Central Quad/mall needs to be strengthened.
- Campus lacks central gathering areas both indoor and outdoor.
- Existing courtyards in the clusters are broken up into small disjointed spaces by ramping system.
- Shrubs and groundcovers in courtyards are overgrown and past their life span.

Recommendations:
- Reinforce entry with native planting with color and texture.
- Increase directional signage in parking areas. Consider new bridges for more direct access to clusters.
- Develop central plaza/gathering node related to new building program to create a stronger sense of campus identity.
- Redesign interior landscapes in the clusters to create small plazas where students can gather. Provide seating, shade, visual interest in these spaces.
- Replant shrub plantings. Consider contract growing of native cultivars from the site to protect the genetic integrity.

Planting Design

Entry Identity Planting
Establish a campus identity for the Indian Valley Campus by infilling stands of native Oak trees along the perimeter road and groves of Oaks in highly visible entrance areas to screen parking areas. In these areas, introduce broad swaths of native shrubs and groundcovers to create interest and texture at the entry.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees</td>
<td></td>
</tr>
<tr>
<td>Coast Live Oak</td>
<td>Quercus agrifolia</td>
</tr>
<tr>
<td>Valley Oak</td>
<td>Quercus lobata</td>
</tr>
<tr>
<td>Shrubs/Groundcover</td>
<td></td>
</tr>
<tr>
<td>Coyote Brush</td>
<td>Baccharis pilularis</td>
</tr>
<tr>
<td>Bush Lupine</td>
<td>Luponus arboreus</td>
</tr>
<tr>
<td>Manzanita</td>
<td>Arctostaphylos spp.</td>
</tr>
<tr>
<td>Mock Orange</td>
<td>Philadelphus lewisii</td>
</tr>
<tr>
<td>Wild Lilac</td>
<td>Ceanothus spp.</td>
</tr>
</tbody>
</table>

Main Campus- Creek Planting
Reinforce the native creek vegetation in areas where it is disturbed or degraded. This vegetation creates a natural gateway into the campus.

Creek Plant List

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees</td>
<td></td>
</tr>
<tr>
<td>Big Leaf Maple</td>
<td>Acer macrophyllum</td>
</tr>
<tr>
<td>Box Elder</td>
<td>Acer negundo</td>
</tr>
<tr>
<td>Buckeye</td>
<td>Aesculus californica</td>
</tr>
<tr>
<td>White Alder</td>
<td>Arbus rhombifolia</td>
</tr>
<tr>
<td>Shrubs/Groundcover</td>
<td></td>
</tr>
<tr>
<td>Clematis</td>
<td>Clematis ligusticifolia</td>
</tr>
<tr>
<td>Hazelnut</td>
<td>Corylus cornua var. californica</td>
</tr>
<tr>
<td>Honeysuckle</td>
<td>Lonicera hispidula var. vacillans.</td>
</tr>
<tr>
<td>Sword Fern</td>
<td>Polystichum munilum</td>
</tr>
<tr>
<td>California Wild Rose</td>
<td>Rosa californica.</td>
</tr>
</tbody>
</table>

Main Campus- Oak Groves
Retain and protect the existing Oak groves. Add additional trees as required to reinforce the ‘grove’ feeling. Do not allow any development within the dripline of the trees.

Oak Grove Plant List

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees</td>
<td></td>
</tr>
<tr>
<td>Coast Live Oak</td>
<td>Quercus agrifolia</td>
</tr>
<tr>
<td>Valley Oak</td>
<td>Quercus lobata</td>
</tr>
</tbody>
</table>

Main Campus- Bank Planting
Vegetate sloped areas with native shrubs and groundcovers as well as compatible non-natives to extend the California landscape theme while providing protection against erosion. Many of the existing slopes have this palette, but the plant material is past its useful life span and is woody and leggy.

Native Bank Planting Plant List

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrubs/Groundcovers</td>
<td>Baccharis pilularis</td>
</tr>
<tr>
<td>Coyote Brush</td>
<td>Fremontedendron</td>
</tr>
<tr>
<td>Flannel Bush</td>
<td>Cistus spp.</td>
</tr>
<tr>
<td>Rockrose</td>
<td></td>
</tr>
<tr>
<td>Wild Lilac</td>
<td>Ceanothus griseus horizontalis</td>
</tr>
</tbody>
</table>
LANDSCAPE PLAN
Central Mall Area
Enhance existing mall area with additional shade tree planting. Maintain the existing turf in this area.

<table>
<thead>
<tr>
<th>Central Mall Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name</td>
</tr>
<tr>
<td>Trees</td>
</tr>
<tr>
<td>Chinese Pistache</td>
</tr>
<tr>
<td>Fraxinus raywoodii</td>
</tr>
<tr>
<td>Coast Live Oak</td>
</tr>
<tr>
<td>Maidenhair Tree</td>
</tr>
<tr>
<td>Turf</td>
</tr>
</tbody>
</table>

Intimate Garden Courtyards
Create smaller scale courtyard gardens. Apply more detail within planting palette and provide an interpretive element with botanical labeling.

<table>
<thead>
<tr>
<th>Sample Zone F Plant List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name</td>
</tr>
<tr>
<td>Trees</td>
</tr>
<tr>
<td>Coffeeberry</td>
</tr>
<tr>
<td>Strawberry Tree</td>
</tr>
<tr>
<td>Western Redbud</td>
</tr>
<tr>
<td>Shrubs/Groundcovers</td>
</tr>
<tr>
<td>California Fuchsia</td>
</tr>
<tr>
<td>California Rose</td>
</tr>
<tr>
<td>Fleabane</td>
</tr>
<tr>
<td>Lavender</td>
</tr>
<tr>
<td>Monkey Flower</td>
</tr>
<tr>
<td>Sage</td>
</tr>
<tr>
<td>Sunrose</td>
</tr>
<tr>
<td>Wild Lilac</td>
</tr>
<tr>
<td>Wild Buckwheat</td>
</tr>
<tr>
<td>Yarrow</td>
</tr>
</tbody>
</table>

Enhanced Meadow Planting
Hydroseed open areas with a native meadow wildflower and grass seed mix appropriate to the character of the individual site.
The new master plan should be viewed simply as a flexible framework for future development on the campus. The main elements of the plan are:

- Improving identity and visibility at the main corner of Sir Francis Drake Boulevard and College Avenue.
- Relocating the existing ‘Taqueria’ restaurant, currently located on this corner, into a proposed ‘Main Street redevelopment’ would allow for the redevelopment of this key corner site so that the College can reflect a much improved identity and image to the community it serves.
- Engaging in a partnership with the County of Marin to propose a vibrant ‘College Avenue’ Main Street renovation that would benefit the College and the local community. New commercial buildings along College Avenue could create local-scale retail and generate revenue for the College as well as forming a street edge of buildings rather than surface parking.
- The new proposed ‘College Avenue’ Main Street improvements would extend down to the College of Marin gym and sports facilities linking them into a cohesive campus environment and improving the ‘college/community’ relationship.
- Improving visibility into the campus interior from Sir Francis Drake Boulevard and ‘restoring’ the axial view towards Mt. Tamalpais intended by the original master plan.
- A new pedestrian promenade arcing across the campus linking both sides of the campus across the creek forming a single coherent campus environment.
- A series of smaller scale informal ‘quadrangles’ that are linked by the new promenade connection across campus. These ‘quads’, each one different in scale and character, would form a hierarchy of outdoor social interaction spaces across the entire campus.
- Depending on the proposed enrolment projections for this campus, there are several opportunities to discretely add and/or replace buildings. According to the Building Conditions Assessment previously performed by 3DI, there are several buildings that should be replaced by new facilities that would better accommodate the teaching mission of the College in the 21st century.
- Any new buildings and/or additions would evoke the more ‘romantic’ style of the architecture of the 1930’s WPA style (eg. Fusselman Hall) rather than the bland modernism of the 1970’s buildings which succeed in visually fragmenting rather than unifying the campus.
- Existing buildings that do not help unify the campus visually, but may be too expensive to replace, can be ‘fronted’ with new additions that improve their appearance and functionality.
- Reinforce/add connections across the Creek to create a campus that is not made up of two halves but of one unified whole.
- Create a social focus or ‘heart’ for the campus
- Add a new parking structure between the Science Building and the adjoining ‘Kentfield Market site’ to allow construction along College Avenue that would replace existing surface parking.
- New buildings/additions and landscape improvements should be designed to be consistent with realistic projections of future maintenance budgets.
- Not to increase vehicle access along existing local residential neighbourhood streets.
LANDSCAPE FOR KENTFIELD

Issues:
- Campus lacks identity/visibility on Sir Francis Drake Blvd with major intersection being occupied by a taqueria.
- Tall shrubs under Redwoods along Sir Francis Drake blocks views into campus.
- Pedestrian access needs to be clearer and more gracious. Access from parking lots is poor. Visual connections to Corte Madera Creek are blocked by fencing and structures on pedestrian bridge.
- Few nodes exist where people can congregate informally.
- Streetscape along College Avenue lacks continuity and interest.
- Visual connections between buildings and to Mount Tamalpais have been blocked by under story plantings.
- Shrub plantings detract from beauty of specimen trees.
- Campus lacks cohesive image in its lighting and site furniture.

Recommendations:
- Create primary gateway at corner of Sir Francis Drake and College Avenue.
- To increase visibility of the campus, remove shrubs under story along Sir Francis Drake and replace with low groundcover planting.
- Create major pedestrian spine through main campus arcing from the new entry to the major crossing along College Avenue. Establish system of trees, lights paving and benches along this axis to unify the campus. Open up the bridge along this access to allow pedestrians to view the creek.
- Develop nodes/courtyards at key pathway intersections to invite informal gatherings. Create new seating area at the Learning Resources building and at the intersection of the paths at Harlan and Learning Resources.
- Add informal amphitheater at Student Services to create additional opportunities for gathering and to reinforce axis of Mount Tamalpais.
- Remove tall shrubs that block view lines across campus. Remove none specimen trees that clutter the landscape.
- Develop system of site furniture, lighting, and paving to create a unified identity.

Planting

The Kentfield campus has mature well-established plantings that in many instances are some of the best examples of their species in the area. However, the under story plantings have obscured the beauty of these specimen trees. Low groundcovers should replace larger shrubs in many areas including the Redwood groves.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redwood Understory</td>
<td></td>
</tr>
<tr>
<td>Wild ginger</td>
<td>Asarum caudatum</td>
</tr>
<tr>
<td>Polystichum munitum</td>
<td>Western swordfern</td>
</tr>
<tr>
<td>Vinca major</td>
<td>Periwinkle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pedestrian Spine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>Trees</td>
</tr>
<tr>
<td>Carpinus betulus fastigata</td>
</tr>
<tr>
<td>Celtis sinensis</td>
</tr>
</tbody>
</table>
COLLEGE OF MARIN

KENTFIELD CAMPUS

- Symbolic Entrance at the Corner of Sir Francis Drake & College Avenue
- Internal Circulation
- Campus Defined
- College Avenue as a District
- New Building to Define Placemaking Areas
- Clear Pedestrian Entrances into Campus

[Diagram of Kentfield Campus with notes on symbolic entrance, internal circulation, and clear pedestrian entrances]
VIGNETTES

- Gateway
- Symbolic Entrance Plaza
- Clear Signage
- Anchor for the Campus
- College Avenue Integrated into the Campus
- Activate Street Through Retail and Commercial Developments
OPENING VIEWS INTO THE CAMPUS AND MOUNT TAMALPAIS FROM SIR FRANCIS DRAKE

VEHICLE ENTRY OFF COLLEGE AVENUE - SIGNAGE CORNER, GATHERING AREA

• Opens View to Campus & Mount Tam
• Easy Access Ways
• Entry Nodes at College Avenue Defined by New Buildings
• Better Signage

COLLEGE OF MARIN

KENTFIELD CAMPUS
Internal Pedestrian Pathway

- New Pavement
- Gathering Spots Along the Pathway
- Clearer & Defined Pathway with Kiosk

Pedestrian Central Spine

FOCAL POINT HARLAN CENTER AND LEARNING RESOURCES
COURTYARD AT LEARING CENTER

OUTDOOR AMPHITHEATER IN FRONT OF STUDENT SERVICES

• Defined Space
• Water Fountain Area
• Amphitheater for Multi-Purposes
 • Concerts
 • Lectures
 • Ceremonial Space
Missionesque”. The elements of the original style were stucco, gable roofs of terra cotta tile, and loggias of semi circular arches resting on short classical columns with smooth shafts and carved capitols. The original buildings faced an irregular commons with an axis of the view of Mount Tamalpais. On the opposite side from the commons the buildings had formal, rectilinear courtyard gardens.

INDIAN VALLEY CAMPUS. All of the buildings at Indian Valley were designed and built at the same time, so they are all of the same style. The Neo Indian Valley style will blend with the original buildings but will be a new and contemporary version of the sustainable institutional building designed to blend in with the natural environment.

District

ARCHITECTURAL STYLE. Design guidelines are intended to influence development of compatible buildings and maintain unity and harmony while allowing the maximum possible freedom in design of individual buildings.

SUSTAINABILITY. All new buildings shall be of sustainable design, sufficient to meet the LEED™ gold category; modernized buildings shall be retrofitted to meet the LEED™ silver category.

ACCESSIBILITY. All new and modernized buildings and places on the campuses shall be designed to be accessible to the disabled according to the laws of the State of California.

CORNER STONES. All new and modernized buildings will have carved cast stone commemorative markers set permanently into the construction close to the main entrance. The marker will convey

- The name of the building
- The year of completion
- The names of the Trustees from project approval to project completion
- The name of the President / Superintendent
- The name of the architect
- The name of the general contractor

If a cast stone marker is not appropriate, a cast bronze marker mounted on a wall will be used in lieu of the stone marker.

FLEXIBILITY. Individual structures should be organized so that special fixed location services such as vertical circulation, rest rooms, and mechanical equipment are at the perimeter of open academic floor space.

UTILITIES SERVICE CORES. Buildings with a high demand for utilities, such as laboratories, generally will be served from centrally located service corridors.
EXTERIOR WALLS. The exterior design of all campus buildings are deemed to serve as the enclosing walls of outdoor spaces.

EXTERIOR MATERIALS. Building materials should be chosen which will weather to a handsome patina, withstand heavy use, and which will be available in the future.

EXTERIOR COLORS AND TEXTURES. For unity of aesthetic expression on the campus, exterior surfaces of all buildings are to be a light, neutral tone ranging from the white or off white to cream, to light tan or the pinkish tan brick on the Kentfield campus.

ROOFS. Sloped terra cotta tile roofs or standing seam metal roofs are preferred to flat roofs and parapets.

PAVING FOR WALKWAYS. An asphaltic concrete paving material will be used on walkways throughout the campus. Where appropriate the walkways should have brick or concrete edging.

INTERIOR COLORS AND TEXTURES. The color and texture of interior finishes should be selected to provide an appropriate visual environment.

Kentfield Campus

In the College of Marin community, there is a deep and pervasive yearning for the unity of the Original Campus Plan and architectural style. Generally, all new construction on the Kentfield Campus will honor the concepts of the Original Campus Plan and the original architectural style as interpreted in the contemporary version of the style referred to as “Neo Art Deco Missionesque.” The architecture of the buildings that violated the campus plan and the architectural style will be analyzed and remodeled so as to recapture the original style as much as possible. Material colors and roof revisions may be the only means to achieve this in some cases.

CAMPUS

- GENERAL SITE
 - Landscape
 - Parking and Traffic
 - Parking structures
 - Useable space on ground level
 - Study perch landings
 - Five levels maximum
 - “Missionesque” compatible style
 - Pedestrian Linkages
 - Perimeter Gateways and Portals
- WAYFINDING SYSTEM
- UTILITIES
 - Central Plant
- Product criteria
- Central Plant location
- Distribution loop

- TECHNOLOGY
- ACCESSIBILITY

ARCHITECTURE

- URBAN DESIGN
 - Honor original campus plan
 - Develop formal courtyards at buildings where possible
 - Protect the neighborhoods as much as possible
 - Develop College Avenue edge

- BUILDINGS
 - General
 - VIEWS OF MOUNT TAMALPAIS. Buildings should be designed to capture the views of Mount Tamalpais and these views should be in public spaces to the maximum degree possible.
 - CONNECTORS. All buildings should be connected to immediately adjacent buildings with architectural colonnades where possible.
 - LOGGIAS. All buildings should have a loggia on at least one north/south façade and one east/west façade.
 - ACCESSIBILITY. All new and modernized buildings shall be totally accessible to the disabled in accord with the laws of the State of California.
 - PERMANENCE. Structures and exteriors shall be of permanent and durable materials with permanent vertical transportation, mechanical cores, and electronic cable risers on perimeter of building
 - INTERIORS. Interiors shall be of construction that is easy to remodel.
 - THERMAL UTILITIES. All new and modernized buildings shall use thermal energy products from the Central Plant. If Central Plant utilities are not available, the mechanical rooms shall be oriented towards the future distribution loop, and mechanical systems will be designed to the Central Plant criteria.
 - Style
 - NEW BUILDINGS are to be of the Neo Art Deco Missionesque style—contemporary but in harmony with the existing Fusselman Hall and the demolished original Harlan Hall.

 - Elements
 - Arcades
 - Classical columns (short)
 - Colonnades
 - Gable roofs
o Materials
 ▪ Gray concrete
 ▪ Tan brick
 ▪ Terra cotta tile
 ▪ Corten steel
 ▪ Tan stucco

- MODERNIZED BUILDINGS
 o Materials
 ▪ Existing
 • Capture newer buildings with
 o Colors
 o Roofs
 ▪ New
 • Copper
 • Tan concrete coating
 • Tan stucco
 o Glazed tile logo
 ▪ FEATURES
 ▪ Maximum views of Mount Tamalpais especially for the public spaces
 ▪ Accentuated entrances
 o ENVELOPE
 ▪ Walls
 ▪ Fenestration
 ▪ Roof

- TECHNOLOGY

Indian Valley Environmental Education Park

COMMON CAMPUS

- GENERAL SITE
 o Honor the original plan
 o Honor the natural environment

- LANDSCAPE
 o General
 • Reinforce entry with native planting with color and texture.
 • Develop central plaza/gathering node related to new building program to create a stronger sense of campus identity.
 • Replant shrub plantings. Consider contract growing of native cultivars from the site to protect the genetic integrity.
 o Planting Design
 • Entry Identity Planting
 Establish a campus identity for the Indian Valley Campus by infilling stands of native Oak trees along the perimeter road and groves of Oaks in highly visible entrance areas to screen
parking areas. In these areas, introduce broad swaths of native shrubs and groundcovers to create interest and texture at the entry.

Entry Area Plant List

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees</td>
<td></td>
</tr>
<tr>
<td>Coast Live Oak</td>
<td>Quercus agrifolia</td>
</tr>
<tr>
<td>Valley Oak</td>
<td>Quercus lobata</td>
</tr>
<tr>
<td>Shrubs/Groundcover</td>
<td></td>
</tr>
<tr>
<td>Coyote Brush</td>
<td>Baccharis pilularis</td>
</tr>
<tr>
<td>Bush Lupine</td>
<td>Lupinus arboreus</td>
</tr>
<tr>
<td>Manzanita</td>
<td>Arctostaphylos spp.</td>
</tr>
<tr>
<td>Mock Orange</td>
<td>Philadelphus lewisii</td>
</tr>
<tr>
<td>Wild Lilac</td>
<td>Ceanothus spp.</td>
</tr>
</tbody>
</table>
- **Creek Planting**
 Reinforce the native creek vegetation in areas where it is disturbed or degraded. This vegetation creates a natural gateway into the campus.

<table>
<thead>
<tr>
<th>Creek Plant List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name</td>
</tr>
<tr>
<td>Trees</td>
</tr>
<tr>
<td>Big Leaf Maple</td>
</tr>
<tr>
<td>Box Elder</td>
</tr>
<tr>
<td>Buckeye</td>
</tr>
<tr>
<td>White Alder</td>
</tr>
<tr>
<td>Shrubs/Groundcover</td>
</tr>
<tr>
<td>Clematis</td>
</tr>
<tr>
<td>Hazelnut</td>
</tr>
<tr>
<td>Honeysuckle</td>
</tr>
<tr>
<td>Sword Fern</td>
</tr>
<tr>
<td>California Wild Rose</td>
</tr>
</tbody>
</table>

- **Oak Groves**
 Retain and protect the existing oak groves. Add additional trees as required to reinforce the ‘grove’ feeling. Do not allow any development within the drip line of the trees.

<table>
<thead>
<tr>
<th>Oak Grove Plant List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name</td>
</tr>
<tr>
<td>Trees</td>
</tr>
<tr>
<td>Coast Live Oak</td>
</tr>
<tr>
<td>Valley Oak</td>
</tr>
</tbody>
</table>
• **Bank Planting**

Vegetate sloped areas with native shrubs and groundcovers as well as compatible non-natives to extend the California landscape theme while providing protection against erosion. Many of the existing slopes have this palette, but the plant material is past its useful life span and is woody and leggy.

<table>
<thead>
<tr>
<th>Native Bank Planting Plant List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name</td>
</tr>
<tr>
<td>Shrubs/Groundcovers</td>
</tr>
<tr>
<td>Coyote Brush</td>
</tr>
<tr>
<td>Flannel Bush</td>
</tr>
<tr>
<td>Rockrose</td>
</tr>
<tr>
<td>Wild Lilac</td>
</tr>
</tbody>
</table>

• **Central Mall Area**

Enhance existing mall area with additional shade tree planting. Maintain the existing turf in this area.

<table>
<thead>
<tr>
<th>Central Mall Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name</td>
</tr>
<tr>
<td>Trees</td>
</tr>
<tr>
<td>Chinese Pistache</td>
</tr>
<tr>
<td>Fraxinus raywoodii</td>
</tr>
<tr>
<td>Coast Live Oak</td>
</tr>
<tr>
<td>Maidenhair Tree</td>
</tr>
<tr>
<td>Turf</td>
</tr>
</tbody>
</table>
• **Intimate Garden Courtyards**

Create smaller scale courtyard gardens. Apply more detail within planting palette and provide an interpretive element with botanical labeling.

Sample Zone F Plant List

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees</td>
<td></td>
</tr>
<tr>
<td>Coffeeberry</td>
<td>Rhamnus californica</td>
</tr>
<tr>
<td>Strawberry Tree</td>
<td>Arbutus unedo</td>
</tr>
<tr>
<td>Western Redbud</td>
<td>Cercis occidentalis</td>
</tr>
<tr>
<td>Shrubs/Groundcovers</td>
<td></td>
</tr>
<tr>
<td>California Fuchsia</td>
<td>Epilobium californica latifolia</td>
</tr>
<tr>
<td>California Rose</td>
<td>Rosa californica</td>
</tr>
<tr>
<td>Fleabane</td>
<td>Erigeron spp.</td>
</tr>
<tr>
<td>Lavender</td>
<td>Lavandula spp.</td>
</tr>
<tr>
<td>Monkey Flower</td>
<td>Mimulus spp.</td>
</tr>
<tr>
<td>Sage</td>
<td>Salvia spp.</td>
</tr>
<tr>
<td>Sunrose</td>
<td>Helianthemum nummularium</td>
</tr>
<tr>
<td>Wild Lilac</td>
<td>Ceanothus spp.</td>
</tr>
<tr>
<td>Wild Buckwheat</td>
<td>Eriogonum spp.</td>
</tr>
<tr>
<td>Yarrow</td>
<td>Achillea millifolium</td>
</tr>
</tbody>
</table>

• **Enhanced Meadow Planting**

Hydro seed open areas with a native meadow wildflower and grass seed mix appropriate to the character of the individual site.
• PARKING AND TRAFFIC
 o One overall system
 o Park Administration (the “Park”) provides and maintains parking
 o Park provides and maintains entrance and loop roads

• WAYFINDING SYSTEM
 o One overall system and style for park
 o Commons
 ▪ Park provides standard
 ▪ Park provides common signage
 o Individual Institutions
 ▪ Provide their own signage
 ▪ Conform to Park standard
 ▪ Customize for individual institution

• PEDESTRIAN LINKAGES. The Park provides and maintains walkways on the Commons.

• CENTRAL PLANT. There is one overall heating and cooling system. The Park provides and maintains central plant and distribution lines

• SHARED (COMMON) BUILDINGS. The Park provides and maintains the Common buildings.
 o Library
 o Student life center
 o Amphitheater and clock tower
 o Community and conference center
 o The “Quad”
 o The Park Administration Building

• TECHNOLOGY. The Park provides common infrastructure backbone or easements for those of individual institutions as necessary

INDIVIDUAL CAMPUSES

• SITE
 o General
 ▪ Honor the original plan
 ▪ Honor the natural environment
 ▪ Siting of new buildings to connect the clusters
 o Landscape
 ▪ Use natural and native plants
 ▪ Use other plants as desired in courtyards
 o Parking and Vehicular Access—Provided by the Park
 o Pedestrian Linkages Tie into Commons

• PERIMETER GATEWAYS AND PORTALS

• WAYFINDING SYSTEM
 o External Signage
 ▪ Provide in accord with the Park standard
 ▪ Individualize as desired for the Institution
 o Internal Signage as desired by the Institution
• UTILITIES
 o Central Plant Products or
 o Conformance to Central Plant
 ▪ Conform to product criteria
 ▪ Conform to distribution loop location

• TECHNOLOGY
 o Park System if available, or
 o Separate System by institution, as necessary

• ACCESSIBILITY REQUIRED OF ALL AREAS AND BUILDINGS

ARCHITECTURE

• URBAN DESIGN
 o Honor the original plan
 o Honor the natural environment

• BUILDINGS
 o General
 • Accessible design
 • Sustainable design
 • Permanent and durable exteriors with permanent vertical transportation, mechanical cores, and electronic cable risers on perimeter of building
 • Flexible interiors
 • Mechanical rooms oriented towards future distribution loop
 o Style
 • New style chosen by individual Institutions; approved by the Park
 • Existing buildings maintained in original style with optional colors by individual Institutions; approved by the Park
 o Features
 • No flat roofs
 • Loggias
 • Accentuated entrances
 o Envelope as determined by individual Institutions; approved by the Park
 • Walls
 • Fenestration
 • Roof

• TECHNOLOGY
 o Interfaces with the Commons
COLLEGE OF MARIN CAMPUS (AT INDIAN VALLEY)

- SITE
 - General
 - Honor the original plan
 - Honor the natural environment
 - Landscape
 - Use natural and native plants
 - Use other plants as desired in courtyards
 - Parking and Vehicular Access--provided by the Park
 - Pedestrian Linkages Tie into Commons
 - Perimeter Gateways and Portals
- WAYFINDING SYSTEM
 - External Signage
 - Provide in accord with the Park standard
 - Individualize as desired for the Institution
 - Internal Signage as desired by the Institution
- UTILITIES
 - Central Plant Products or
 - Conformance to Central Plant
 - Conform to product criteria
 - Conform to distribution loop location
- TECHNOLOGY
 - Park System if available, or
 - Separate System by Institution, as necessary
- ACCESSIBILITY REQUIRED OF ALL AREAS AND BUILDINGS
- ARCHITECTURE
 - Urban Design
 - Honor the original plan
 - Honor the natural environment
 - Buildings
 - General
 - Accessible design
 - Sustainable design
 - Permanent and durable exteriors with permanent vertical transportation, mechanical cores, and electronic cable risers on perimeter of building
 - Flexible interiors
 - Mechanical rooms oriented towards future distribution loop
 - Style
 - New style chosen by individual Institutions; approved by the Park
 - Existing buildings maintained in original style with optional colors by individual Institutions; approved by the Park
- Materials
 - Permanent materials (no wood)
 - Gray green paint
 - Dark forest (chromium) green trim
- Features
 - No flat roofs
 - Loggias
 - Accentuated entrances
- Envelope as determined by individual Institutions; approved by the Park
 - Walls
 - Fenestration
 - Roof

- TECHNOLOGY
 - Interfaces with the commons
Appendix G: Sustainable Architecture

All Sophistication comes full circle: first untutored simplicity, then complexity, and then later a more sophisticated (and complex) return to simplicity; first, the natural, then the artificial, and then a sophisticated return to the natural.

John Gardner
Secretary of Health, Education, and Welfare

Introduction

Sustainability means achieving satisfying lives for all within the limited capacity of the planet. It is a global issue that has local consequences and a local solution. In the County of Marin Countywide Plan this definition is repeated in the context of Marin: “Sustainability requires managing all households—individual, community, national, and global—in ways that ensure that our economy and society can continue to exist without destroying the natural environment on which we all depend.”

Sustainable Architecture

Sustainable architecture is one important way that individuals, corporations, institutions, and their governments can contribute to the solution. Deciding to build sustainable buildings presents both philosophical and technological challenges. James Lovelock’s theory that all life on Earth is interconnected in a closed system has been made into a practical and applicable approach called the “Natural Step”, by a Swedish physician named Karl-Henrik Robert. Another challenge is the need to think about building projects in terms of long term and maintenance costs rather than initial cost alone.

LEED™ System

The Leadership in Energy and Environmental Design Program (LEED™) developed by the U. S. Green Building Council (www.usgbc.org) provides a rating system that helps provide definitive standards for what constitutes a “green” or sustainable building. The system evaluates Landscape and Site Issues, Structural Materials, Building Envelope, Building Finishes, Heating, Ventilation, Air Conditioning and Lighting, and On-site Power Generation and Water Treatment. The ultimate goal is to construct buildings that have “zero impact” on the environment by eliminating everything that flows in or out of the building and its site. Such “off the grid” buildings are possible at present, but still largely represent a theoretical goal.
The LEED™ rating system allows for a project to be designed as close to the theoretical goal as possible at the moment.

Marin Tradition

The tradition of environmental responsibility is a long and strong one in Marin County. It is reflected in the County of Marin’s government ([*Marin County Countywide Plan*](http://www.future-marin.org)) and in its individuals. For instance, it is said that there are more solar electric homes in Marin County than anywhere else in the country.

In addition to the tradition of environmental stewardship in Marin, there is the fact that the original buildings of the College of Marin campus prior to the 1960’s employed many of the principles of sustainable design.

“Green” Premium

Some say that “green” buildings mean more costly buildings. Several years ago the State of California established a Sustainable Building Task Force to assess the costs and benefits of constructing green buildings in California. The latest report from the commission based on the costs of 33 green buildings in the United States and the cost of energy, water, and waste disposal in California indicates that it costs about 2 percent more on average—or $3 to $5 per square foot for commercial construction—to construct a green building than to construct one using conventional “least initial cost” methods. This “green premium” yields savings of more than 10 times the initial investment—$50 to $75 per square foot during the life of a building (20 years for this report). This is considerably lower than the conventional wisdom of five years ago which placed the “green Premium” at 5 to 15 percent. The report concludes that designing to the LEED™ Gold level—the next to the highest—makes the most financial sense.

Good stewardship of public funds mandates construction of sustainable buildings for public institutions. Recently, the State of California’s Education Building was awarded the Gold LEED™ plaque.

Guiding Principles

Some *Guiding Principles* for **SUSTAINABLE ARCHITECTURE** at the College of Marin are these:

- Continue tradition of landscape and heritage trees.
- Seek LEED™ Gold certification for all buildings.
- Build thinner and taller buildings.
- Build long term structures and exteriors
- Build photo voltaic roofs.
• Build energy efficient buildings in accordance with the California Energy Code (Title 24).
• Construct a central heating and cooling plant and distribution system.
• Locate mechanical rooms, toilet rooms, and vertical access/egress facilities on the exterior of the building.
• Build HV/AC systems that use natural ventilation to the maximum degree possible
• Use the College of Marin architecture as a learning resource.

Conclusion

The time, place, and people are right for the development of sustainable institutional architecture to be built in Marin County. The College of Marin should be the leader in this effort. The proposed Architectural Design Guidelines and Landscape Design Guidelines for the College should include the requirements for sustainable design.

It is important that the next new building be an icon building that exhibits the new architectural vocabulary rooted in the original architectural style. This building should also demonstrate the College’s commitment to sustainable architecture. This will be an important project with far reaching influence. It will deserve a noted environmental designer. The building may rival the importance of Marin’s Frank Lloyd Wright designed Government Center.
Appendix H: A Strategy for Utilization of the Indian Valley Campus

“The overall goal [of the original campus master plan] is to produce a Campus that is singularly harmonious in its design concept while providing an environment that is capable of adapting to the continually changing functional requirements of a community college. It is also hoped the plan will instill a love and respect for the environment it has endeavored to create and preserve.”

Indian Valley Colleges: A Master Plan, 1980
Neptune & Thomas Associates, Architects

Introduction

A complete community college campus was designed and built from scratch at Indian Valley in the north Marin County area. It was completed in 1975. The projected growth in population that the Indian Valley Colleges campus was planned to serve never occurred. Presently, many people doubt that it ever will. At this moment there is a campus with facilities for 2,500 FTE students (5,000 head count) and their cars that is significantly underused.

It is critical that a means of using the campus be found. The successful strategy will be very different from the original mission of general education at the Indian Valley Campus; but the strategy should also keep the potential for that original mission to be fulfilled, as well. There will be growth in the north Marin County through the years, even if it is much slower than once projected. The strategy for the time being must be one of qualitative change rather than quantitative growth. The right qualitative strategy will bring quantitative increases. These quantitative increases will justify the development of general education at the site.

The students needed for the full utilization of this campus that is “not on the way to any where” must be drawn to this campus from elsewhere. One way this can happen is if there are unique educational programs provided that use the magnificent physical environment and serene setting of Indian Valley. Some of these students would come from Marin County, but for the most part, they would probably come from other areas—Northern California, California in general, and the Western United States.
Present Situation

The College of Marin has already acted to use the Indian Valley Campus in some new ways that further education generally both for the County as a whole and for the North County in particular. At the lower end of the education spectrum the College is leasing space for the Marin School of Arts and Technology, a charter high school. At the upper level of education there is a College initiative to bring San Francisco State University or a similar institution onto the campus to provide upper level and graduate course work. These actions suggest a strategy of an “educational park” using the resources of other institutions to build and staff the various schools and related organizations. There has also been interest in developing a health and wellness center on the campus that could be shared with the community.

Existing Resources

GENERAL. The County of Marin is known for its strong interests in the environment (and stewardship, thereof), in fine arts, in personal fitness, and in outdoor sports and recreation. These interests and the unique qualities of the Indian Valley Campus environment suggest a theme for a specialized educational park. The theme could be “a healthy body, mind, and spirit in a healthy environment”. This theme suggests an “environmental education center”—for life education in, for, and of the natural environment.

The College officially states at present that it is “committed to targeted credit and non-credit programming which responds to distinctive regional interest and needs in areas of health, wellness, culture, environment, and technology”.

What do the College of Marin and the Indian Valley Campus have with which to work in order to create such an environmental education center?

COLLEGE OF MARIN. The College has a great set of resources both physical and programmatic already in place for establishing such a themed center:

- The initial actions already taken and described in PRESENT SITUATION above.
- The natural environment of the campus—a 333-acre California oak-bay grove of exceptional beauty in a remarkable valley adjacent to an immense public open space preserve.
- The mystique of the Indian cultures that lived in the valley and from which the campus name was derived. The Indians were themselves
stewards of the environment. Lawrence Halprin, the landscape architect for Sea Ranch, drew from the Pomo Indians’ philosophy of “Live lightly on the land” when he designed the site for that project.

- A complete array of campus facilities carefully designed with the environment as a major determinant. The campus was designed in the period of time when Sea Ranch was designed and built, when the first Earth Day occurred, and when Design with Nature by Ian McHarg was published. The buildings of the campus are prescient in their “greenness” and “sustainability”. [Refer to Appendix J.]

- A feeling of bucolic retreat, monastic cloister, and health resort.

- A superior “Career Education Center” already in existence and built around the Automotive Technology and Automotive Collision Repair Technology programs, as well as the Machine and Metals Technology, Welding, Medical Assisting, and Court Reporting programs.

- A splendid Multimedia Studies program located literally over the hill from the Lucas Ranch.

- A Marine Biology Laboratory at Bolinas across the mountain from the campus. This facility is reportedly the only such facility at a community college in the entire United States.

The Career Education Center can be augmented by transferring the other career programs to Indian Valley from the Kentfield Campus. This will free up some space at the Kentfield Campus and will help populate the Indian Valley Campus. The career programs that could be transferred are these:

- Dental Assisting
- Nursing (registered)
- Environmental Landscape Design
- Architecture (sustainable design in conjunction with Environmental Landscape Design)
- Computer Technician Certification

These already existing and applicable academic course offerings could be taught at Indian Valley:

- Anthropology department: ANTH 215 Native Americans of California
- Architecture department: ARCH 130 Introduction to Architecture and Environmental Design
- Art department: ART 170, 171, 270, 271 Ceramic
- Biology department: BIOL 138 Introduction to Environmental Science
 BIOL 143 Stewardship of Marin Parks and Open Space
BIOL 148 Marin County Agriculture
BIOL 159 Introduction to Aquatic Biology
BIOL 163 Ecology of Estuaries
BIOL 170 Biology of Marine Animals
BIOL 234 Fishery Biology
BIOL 235 General Marine Biology
BIOL 237 Marine Ecology Field Studies
BIOL 254 Environmental Microbiology
BIOL 245 Field Ecology of Marin

- Ethnic Studies department:
 ETST 151 Native American History

- Geography department:
 GEOG 101 The Physical Environment
 GEOG 116 Field Geography, Marin County

- Geology department:
 GEOL 103 Environmental Geology
 GEOL 109 General Oceanography
 GEOL 127 Geologic Studies of Marin County
 GEOL 128 Geologic Studies of Pt. Reyes and the San Andreas Fault
 GEOL 138 Introduction to Environmental Science

- Psychology department:
 PSY 251 The Brain: Mind and Body

SAN FRANCISCO STATE UNIVERSITY. SFSU could bring these course offerings to the “Center” in its first phase, to be housed in the Ohlone Cluster.

- Business
 - BBA
 - MBA
 - Executive MBA

- Environmental Studies

- Anthropology
 - Local Indian cultures
 - Museum of local Indian cultural artifacts

- Museum Management

- Fine Arts

MARIN COUNTY. The tradition of environmental stewardship in Marin County is outstanding. This stewardship is built into the governance mechanism as seen on the Marin County web site.
Implementation

DEVELOP CONCEPT

- Design the institution ("the Environmental Educational Center") and name it (e.g. "College of Marin Environmental Education Center at Indian Valley")
- Structure the institution legally.
 - Mission
 - Covenants
 - Deeds or Leases (99 years)
 - Organization and management
 - Etc.
- Endow the institution
 - Establish an agent for "E pluribus unum".
 - Agent to be manager of shared resources
 - Administrative Services Center
 - Parking
 - Commons (e.g. roadways, walkways, landscape, utilities, etc.)
 - Existing buildings not in College of Marin campus
 - Conference and Community Center
 - Library
 - Student Life Building
 - Amphitheater
 - Campus Green
 - Bolinas Marine Biology Laboratory
- Prepare the campus plan and surveys
 - Define areas
 - Commons
 - College of Marin at Pomo Cluster
 - San Francisco State University at Ohlone Cluster
 - Others
 - List potential “other” institutions desired to maximize the “Center”
- Remodel all existing buildings [Refer to Appendix J]
 - Remove extraneous architectural details.
 - Remove screen walls and fences.
 - Re-roof with standing seam metal.
 - Add metal sunscreen / wall roofs in lieu of existing sunscreens.
 - Install new H/VAC systems in buildings.
 - Install rain collector systems for all buildings.
 - Build new elevator and stair components for each cluster.
- Announce and market the concept / the “Environmental Education Center”.
- Consolidate College of Marin in the “Pomo Cluster”.
- Consolidate existing functions and programs.
• Transfer existing career programs from Kentfield to IVC.
• Relocate applicable academic course offerings from Kentfield to IVC.
• Articulate programs, academic courses, etc., with San Francisco State University and others to maximize theme.
• Develop specialized housing for the center (on or off the campus)
• Develop summer residency programs (art, writing, music, dance, drama, etc.)
• Develop a health and wellness center for education lab, student life, and community health; use the existing recreational sports facilities.
• Locate other institutions for the center
• Expand the College of Marin general education transfer curriculum as demand builds in the area

Summary

The College of Marin Environmental Education Center at Indian Valley could employ the existing resources, experience, and thought invested in the Indian Valley Campus to develop a state and nationally recognized nexus for environmental research, study, and service. This concept would be a “magnet school” drawing students from all over northern California, California, and the western United States. The activity would generate students to support the evolution of the original mission of providing community college access to the students in the North Marin County area. Students at all levels of education for high school to graduate school would receive an education in an atmosphere of sound mind, body, and spirit in a milieu of stewardship of the Earth in a remarkably beautiful natural environment of ocean, mountain, sky, and trees. The Center would be a vanguard effort and a prototype campus for meaningful and relevant education.
Appendix I: The Reuse of the Existing Building at Indian Valley Campus

The Problem

The Master Plan for the Indian Valley Colleges of the College of Marin was adopted by the Board of Trustees in 1973. It was the fifth version and resulted from a process that began in 1968. The initial campus was planned for 2,500 FTE students with area for expansion to 5,000. This represents a head count of approximately 5,000 and 10,000 students respectively.

College A (now the Ohlone complex) was planned as the College of Social and Behavioral Sciences and was designed for approximately 700 students; College B (now the Miwok complex) was planned as the College of Arts and Humanities and was designed for 900, and College C (now the Pomo complex) was planned for the College of Natural and Physical Sciences and designed for 1,000. Two larger additional complexes of 1,200 each were allowed for with a third future site reserved for a student body grown considerably larger. The three complexes total approximately 130,000 gross square feet.

There were 838 parking spaces constructed for the 2500 FTE student body and its faculty and staff. Original plans called for adding only 480 additional spaces for the 5,000 students of the future.

The land for the Indian Valley Campus was purchased in 1966. Of the 333 acres only 113 acres are at 20% or less slope and only 69 acres are at 10% or less slope. The campus was designed within the area of 20% or less slope.

There is a large capital investment at this campus, which is mostly unused or, at the very least is highly under used.

The Conventional Wisdom

The projected population that the Indian Valley Campus was planned for never occurred; at present people doubt that it ever will. To make matters worse, the entire campus was shut down in 1985 to make structural repairs. The laminated timber beams exposed to the weather were delaminating. Law suits followed and repairs were made. The nature of such lawsuits produced a restored version of the original design with the exposed beams protected with copper caps. After a couple of years the campus reopened, but what momentum that had once been was lost. Anecdotal discussions tell of people in Novato who to this day do not know the campus is again open.
The experience was so traumatic to all who were directly involved that a conventional wisdom concerning the campus developed. There has even been talk of tearing the buildings down and/or selling the land. Tenets of this conventional wisdom are these:

- The campus is a poor design; the college clusters (“pods”) were a failure. The pods are too far apart.
- The buildings were poorly designed and wood should never have been used for their construction.
- The buildings are educationally inadequate.
- The buildings are not safe and are falling apart.
- The buildings are a hopeless maintenance nightmare.

The idea of demolishing the buildings is based on these tenets: Presumably, if the campus was demolished, the parking and the Physical Education complex would remain. The demolition of the other structures would be a write off of more than $50,000,000 replacement value at just a moment in time when capital for public projects is difficult to get.

The Facts

The facts relative and contrary to this conventional wisdom are these:

- *The pods are no further apart than the single building pattern of a regular campus. The longest walk is less than ten minutes.*

- *The aesthetic of the architecture is highly “green” (sustainable) and very appropriate; it “touches the land very lightly” with few foundations having been carved into the Earth. Much thought went into this design.*

- *Wood is a perfectly good material, especially for low rise construction in an area of seismic likelihood. However, wood must be protected from the weather (the rain). The “universal solvent”, water, is hard on wood and everything else organic. This is why all architecture begins with a structure to hold up a roof to keep the water off of man and his possessions.*

- *Wood is not an innately poor choice for this design. There are wood buildings in New England that are still standing after 400 years.*
• The decision to paint the walls was a wise one. The fundamental purpose of paint is to protect wood. The color of the paint chosen was unfortunate.

• The stairs and walkways are all of wood and are unprotected. Most have been replaced once, and will undoubtedly be replaced again in the not too distant future.

• The buildings are ready to use with minimal renovation and remodeling. The 28 feet “universal grid” provided by the laminated beam structure makes the entire interior highly flexible for serious remodeling as needed in the future.

• The structural problem was apparently limited to the architectural aesthetic detail of false cantilevered beams at each corner of every building, and not to the actual structure of the buildings.

• This mostly aesthetic corner detail did have a functional purpose of carrying the intricate wood grille sunscreens. These wooden sunscreens are now past their life span having been exposed to the weather for thirty years.

• The buildings were designed in a universal structural grid of 28 feet square. The interiors are totally flexible for remodeling.
A Solution

The buildings can readily be fixed and reused:

- The architectural detail of the false cantilevered corner beams should be removed along with all of the failing sunscreens. The corner detail of the real beams can be covered with a galvanized steel connector. The sunscreens can be replaced with galvanized steel brackets that carry a continuous metal roof that serves both as the sunscreen and a roof to keep water off of the walls.

- The wooden shake roofs are failing, too, after thirty years, which is about their normal life span. These roofs can easily be replaced with galvanized steel standing seam roofs. These roofs would eliminate a great deal of the threat from fire that presently exists. They could also serve as rain catching roofs.

- The campus has an operational central plant; the HVAC equipment in each building can be replaced with one that can be maintained. New systems are much more efficient than those of thirty years ago.

- The buildings could be painted an appropriate color(s).

- The wooden stairs could be replaced with galvanized steel stairs, and the ADA nonconforming ramps could be replaced with a typical elevator module at each complex.

- The prismatic shapes of the stair and elevator components and the cylindrical form of the rain storage cisterns could be a new architectural feature of the campus.

- The mechanical systems (heating and air conditioning) in the buildings should be replaced with new state of the art, energy efficient equipment.

Conclusion

The existing buildings at Indian Valley are a considerable resource. They are not falling down and can readily be used as the initial facilities of the “environmental education park”. All of the buildings should be re-roofed for capital preservation. As part of the re-roofing project, the false corner details and sunscreens should be removed and replaced with a continuous metal roof that can serve as sunscreen and roof. Repainting in appropriate colors should also be considered. Each cluster should have its own color.

The Pomo Cluster should be completely remodeled to serve as the campus for the College of Marin at Indian Valley.

New buildings of a different but harmonious design can be built adjacent to the clusters or on sites where buildings are demolished.